Uses of Interface
org.hipparchus.CalculusFieldElement
-
Packages that use CalculusFieldElement Package Description org.hipparchus.analysis Parent package for common numerical analysis procedures, including root finding, function interpolation and integration.org.hipparchus.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.hipparchus.analysis.integration Numerical integration (quadrature) algorithms for univariate real functions.org.hipparchus.analysis.integration.gauss Gauss family of quadrature schemes.org.hipparchus.analysis.interpolation Univariate real functions interpolation algorithms.org.hipparchus.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.complex Complex number type and implementations of complex transcendental functions.org.hipparchus.dfp Decimal floating point library for Javaorg.hipparchus.geometry.euclidean.threed This package provides basic 3D geometry components.org.hipparchus.geometry.euclidean.twod This package provides basic 2D geometry components.org.hipparchus.linear Linear algebra support.org.hipparchus.ode This package provides classes to solve Ordinary Differential Equations problems.org.hipparchus.ode.events Eventsorg.hipparchus.ode.nonstiff This package provides classes to solve non-stiff Ordinary Differential Equations problems.org.hipparchus.ode.sampling This package provides classes to handle sampling steps during Ordinary Differential Equations integration.org.hipparchus.special Implementations of special functions such as Beta and Gamma.org.hipparchus.special.elliptic.carlson Implementations of Carlson elliptic integrals.org.hipparchus.special.elliptic.jacobi Implementations of Jacobi elliptic functions.org.hipparchus.special.elliptic.legendre Implementations of Legendre elliptic integrals.org.hipparchus.util Convenience routines and common data structures used throughout the Hipparchus library. -
-
Uses of CalculusFieldElement in org.hipparchus.analysis
Classes in org.hipparchus.analysis with type parameters of type CalculusFieldElement Modifier and Type Interface Description interface
CalculusFieldBivariateFunction<T extends CalculusFieldElement<T>>
An interface representing a bivariate field function.interface
CalculusFieldMultivariateFunction<T extends CalculusFieldElement<T>>
An interface representing a scalar multivariate function.interface
CalculusFieldMultivariateMatrixFunction<T extends CalculusFieldElement<T>>
An interface representing a matrix multivariate function.interface
CalculusFieldMultivariateVectorFunction<T extends CalculusFieldElement<T>>
An interface representing a vector multivariate function.interface
CalculusFieldUnivariateFunction<T extends CalculusFieldElement<T>>
An interface representing a univariate real function.interface
CalculusFieldUnivariateMatrixFunction<T extends CalculusFieldElement<T>>
An interface representing a univariate matrix function.interface
CalculusFieldUnivariateVectorFunction<T extends CalculusFieldElement<T>>
An interface representing a univariate vectorial function for any field type.Methods in org.hipparchus.analysis with type parameters of type CalculusFieldElement Modifier and Type Method Description default <T extends CalculusFieldElement<T>>
CalculusFieldBivariateFunction<T>FieldBivariateFunction. toCalculusFieldBivariateFunction(Field<T> field)
Convert to aCalculusFieldBivariateFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateFunction<T>FieldMultivariateFunction. toCalculusFieldMultivariateFunction(Field<T> field)
Convert to aCalculusFieldMultivariateFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateMatrixFunction<T>FieldMultivariateMatrixFunction. toCalculusFieldMultivariateMatrixFunction(Field<T> field)
Convert to aCalculusFieldMultivariateMatrixFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateVectorFunction<T>FieldMultivariateVectorFunction. toCalculusFieldMultivariateVectorFunction(Field<T> field)
Convert to aCalculusFieldMultivariateVectorFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateFunction. toCalculusFieldUnivariateFunction(Field<T> field)
Convert to aCalculusFieldUnivariateFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateMatrixFunction<T>FieldUnivariateMatrixFunction. toCalculusFieldUnivariateMatrixFunction(Field<T> field)
Convert to aCalculusFieldUnivariateMatrixFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateVectorFunction<T>FieldUnivariateVectorFunction. toCalculusFieldUnivariateVectorFunction(Field<T> field)
Convert to aCalculusFieldUnivariateVectorFunction
with a specific type.<T extends CalculusFieldElement<T>>
TFieldBivariateFunction. value(T x, T y)
Compute the value for the function.<T extends CalculusFieldElement<T>>
TFieldMultivariateFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
TFieldUnivariateFunction. value(T x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)
Compute the value for the function.<T extends CalculusFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)
Compute the value for the function.Methods in org.hipparchus.analysis that return CalculusFieldElement Modifier and Type Method Description T[][]
CalculusFieldMultivariateMatrixFunction. value(T... x)
Compute the value of the function.T[]
CalculusFieldMultivariateVectorFunction. value(T... x)
Compute the value of the function.T[][]
CalculusFieldUnivariateMatrixFunction. value(T x)
Compute the value for the function.T[]
CalculusFieldUnivariateVectorFunction. value(T x)
Compute the value for the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)
Compute the value for the function.<T extends CalculusFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)
Compute the value for the function.Methods in org.hipparchus.analysis with parameters of type CalculusFieldElement Modifier and Type Method Description T
CalculusFieldMultivariateFunction. value(T... x)
Compute the value of the function.T[][]
CalculusFieldMultivariateMatrixFunction. value(T... x)
Compute the value of the function.T[]
CalculusFieldMultivariateVectorFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
TFieldMultivariateFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction. value(T... x)
Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction. value(T... x)
Compute the value of the function. -
Uses of CalculusFieldElement in org.hipparchus.analysis.differentiation
Classes in org.hipparchus.analysis.differentiation with type parameters of type CalculusFieldElement Modifier and Type Interface Description interface
Derivative<T extends CalculusFieldElement<T>>
Interface representing both the value and the differentials of a function.class
FDSFactory<T extends CalculusFieldElement<T>>
Factory forFieldDerivativeStructure
.static class
FDSFactory.DerivativeField<T extends CalculusFieldElement<T>>
Field for {link FieldDerivativeStructure} instances.interface
FieldDerivative<S extends CalculusFieldElement<S>,T extends FieldDerivative<S,T>>
Interface representing both the value and the differentials of a function.class
FieldDerivativeStructure<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldGradient<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldGradientField<T extends CalculusFieldElement<T>>
Field forGradient
instances.class
FieldTaylorMap<T extends CalculusFieldElement<T>>
Container for a Taylor map.class
FieldUnivariateDerivative<S extends CalculusFieldElement<S>,T extends FieldUnivariateDerivative<S,T>>
Abstract class representing both the value and the differentials of a function.class
FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative1Field<T extends CalculusFieldElement<T>>
Field forFieldUnivariateDerivative1
instances.class
FieldUnivariateDerivative2<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative2Field<T extends CalculusFieldElement<T>>
Field forFieldUnivariateDerivative2
instances.Subinterfaces of CalculusFieldElement in org.hipparchus.analysis.differentiation Modifier and Type Interface Description interface
Derivative<T extends CalculusFieldElement<T>>
Interface representing both the value and the differentials of a function.interface
FieldDerivative<S extends CalculusFieldElement<S>,T extends FieldDerivative<S,T>>
Interface representing both the value and the differentials of a function.Classes in org.hipparchus.analysis.differentiation that implement CalculusFieldElement Modifier and Type Class Description class
DerivativeStructure
Class representing both the value and the differentials of a function.class
FieldDerivativeStructure<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldGradient<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative<S extends CalculusFieldElement<S>,T extends FieldUnivariateDerivative<S,T>>
Abstract class representing both the value and the differentials of a function.class
FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative2<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
Gradient
Class representing both the value and the differentials of a function.class
SparseGradient
First derivative computation with large number of variables.class
UnivariateDerivative<T extends UnivariateDerivative<T>>
Abstract class representing both the value and the differentials of a function.class
UnivariateDerivative1
Class representing both the value and the differentials of a function.class
UnivariateDerivative2
Class representing both the value and the differentials of a function.Methods in org.hipparchus.analysis.differentiation with type parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform addition of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)
Compute two arguments arc tangent of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.<T extends CalculusFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient. constant(int freeParameters, T value)
Build an instance corresponding to a constant value.<T extends CalculusFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform division of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exponential of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exp(x) - 1 of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldGradientField<T>FieldGradientField. getField(Field<T> valueField, int parameters)
Get the field for number of free parameters.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1Field<T>FieldUnivariateDerivative1Field. getUnivariateDerivative1Field(Field<T> valueField)
Get the univariate derivative field corresponding to a value field.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative2Field<T>FieldUnivariateDerivative2Field. getUnivariateDerivative2Field(Field<T> valueField)
Get the univariate derivative field corresponding to a value field.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute natural logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes base 10 logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes shifted logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform multiplication of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)
Compute power of a double to a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)
Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute integer power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)
Compute power of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. pow(double a, FieldDerivativeStructure<T> x)
Compute ax where a is a double and x aFieldDerivativeStructure
static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient. pow(double a, FieldGradient<T> x)
Compute ax where a is a double and x aFieldGradient
static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1<T>FieldUnivariateDerivative1. pow(double a, FieldUnivariateDerivative1<T> x)
Compute ax where a is a double and x aFieldUnivariateDerivative1
static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative2<T>FieldUnivariateDerivative2. pow(double a, FieldUnivariateDerivative2<T> x)
Compute ax where a is a double and x aFieldUnivariateDerivative2
<T extends CalculusFieldElement<T>>
voidDSCompiler. rebase(T[] ds, int dsOffset, DSCompiler baseCompiler, T[] p, T[] result, int resultOffset)
Rebase derivative structure with respect to low level parameter functions.<T extends CalculusFieldElement<T>>
voidDSCompiler. reciprocal(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute reciprocal of derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform remainder of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute nth root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)
Compute combined sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinhCosh(T[] operand, int operandOffset, T[] sinh, int sinhOffset, T[] cosh, int coshOffset)
Compute combined hyperbolic sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sqrt(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute square root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform subtraction of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)
Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)
Evaluate Taylor expansion of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient. variable(int freeParameters, int index, T value)
Build aGradient
representing a variable.Methods in org.hipparchus.analysis.differentiation that return CalculusFieldElement Modifier and Type Method Description T[]
FieldDerivativeStructure. getAllDerivatives()
Get all partial derivatives.T[]
FieldGradient. getGradient()
Get the gradient part of the function.T[]
FieldTaylorMap. getPoint()
Get the point at which map is evaluated.T[]
FieldTaylorMap. value(double... deltaP)
Evaluate Taylor expansion of the map at some offset.T[]
FieldTaylorMap. value(T... deltaP)
Evaluate Taylor expansion of the map at some offset.Methods in org.hipparchus.analysis.differentiation with parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform addition of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)
Compute two arguments arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic tangent of a derivative structure.FieldDerivativeStructure<T>
FDSFactory. build(T... derivatives)
Build aFieldDerivativeStructure
from all its derivatives.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.FieldDerivativeStructure<T>
FieldDerivativeStructure. compose(T... f)
Compute composition of the instance by a univariate function.<T extends CalculusFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform division of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exponential of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exp(x) - 1 of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.FieldDerivativeStructure<T>
FieldDerivativeStructure. linearCombination(T[] a, FieldDerivativeStructure<T>[] b)
Compute a linear combination.FieldGradient<T>
FieldGradient. linearCombination(T[] a, FieldGradient<T>[] b)
Compute a linear combination.FieldUnivariateDerivative1<T>
FieldUnivariateDerivative1. linearCombination(T[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.FieldUnivariateDerivative2<T>
FieldUnivariateDerivative2. linearCombination(T[] a, FieldUnivariateDerivative2<T>[] b)
Compute a linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute natural logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes base 10 logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes shifted logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform multiplication of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)
Compute power of a double to a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)
Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute integer power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)
Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. rebase(T[] ds, int dsOffset, DSCompiler baseCompiler, T[] p, T[] result, int resultOffset)
Rebase derivative structure with respect to low level parameter functions.<T extends CalculusFieldElement<T>>
voidDSCompiler. reciprocal(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute reciprocal of derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform remainder of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute nth root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)
Compute combined sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinhCosh(T[] operand, int operandOffset, T[] sinh, int sinhOffset, T[] cosh, int coshOffset)
Compute combined hyperbolic sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sqrt(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute square root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform subtraction of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)
Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)
Evaluate Taylor expansion of a derivative structure.T
FieldDerivativeStructure. taylor(T... delta)
Evaluate Taylor expansion of a derivative structure.T
FieldGradient. taylor(T... delta)
Evaluate Taylor expansion of a gradient.T[]
FieldTaylorMap. value(T... deltaP)
Evaluate Taylor expansion of the map at some offset.Constructors in org.hipparchus.analysis.differentiation with parameters of type CalculusFieldElement Constructor Description FieldGradient(T value, T... gradient)
Build an instance with values and derivative.FieldTaylorMap(T[] point, FieldDerivativeStructure<T>[] functions)
Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.analysis.integration
Classes in org.hipparchus.analysis.integration with type parameters of type CalculusFieldElement Modifier and Type Class Description class
BaseAbstractFieldUnivariateIntegrator<T extends CalculusFieldElement<T>>
Provide a default implementation for several generic functions.class
FieldMidPointIntegrator<T extends CalculusFieldElement<T>>
Implements the Midpoint Rule for integration of real univariate functions.class
FieldRombergIntegrator<T extends CalculusFieldElement<T>>
Implements the Romberg Algorithm for integration of real univariate functions.class
FieldSimpsonIntegrator<T extends CalculusFieldElement<T>>
Implements Simpson's Rule for integration of real univariate functions.class
FieldTrapezoidIntegrator<T extends CalculusFieldElement<T>>
Implements the Trapezoid Rule for integration of real univariate functions.interface
FieldUnivariateIntegrator<T extends CalculusFieldElement<T>>
Interface for univariate real integration algorithms.class
IterativeLegendreFieldGaussIntegrator<T extends CalculusFieldElement<T>>
This algorithm divides the integration interval into equally-sized sub-interval and on each of them performs a Legendre-Gauss quadrature. -
Uses of CalculusFieldElement in org.hipparchus.analysis.integration.gauss
Classes in org.hipparchus.analysis.integration.gauss with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldAbstractRuleFactory<T extends CalculusFieldElement<T>>
Base class for rules that determines the integration nodes and their weights.class
FieldGaussIntegrator<T extends CalculusFieldElement<T>>
Class that implements the Gaussian rule forintegrating
a weighted function.class
FieldGaussIntegratorFactory<T extends CalculusFieldElement<T>>
Class that provides different ways to compute the nodes and weights to be used by theGaussian integration rule
.class
FieldHermiteRuleFactory<T extends CalculusFieldElement<T>>
Factory that creates a Gauss-type quadrature rule using Hermite polynomials of the first kind.class
FieldLaguerreRuleFactory<T extends CalculusFieldElement<T>>
Factory that creates Gauss-type quadrature rule using Laguerre polynomials.class
FieldLegendreRuleFactory<T extends CalculusFieldElement<T>>
Factory that creates Gauss-type quadrature rule using Legendre polynomials.class
SymmetricFieldGaussIntegrator<T extends CalculusFieldElement<T>>
This class's implementsintegrate
method assuming that the integral is symmetric about 0.Methods in org.hipparchus.analysis.integration.gauss that return CalculusFieldElement Modifier and Type Method Description protected T[]
FieldAbstractRuleFactory. findRoots(int n, CalculusFieldUnivariateFunction<T> ratioEvaluator)
Computes roots of the associated orthogonal polynomials.Methods in org.hipparchus.analysis.integration.gauss with parameters of type CalculusFieldElement Modifier and Type Method Description protected void
FieldAbstractRuleFactory. enforceSymmetry(T[] roots)
Enforce symmetry of roots.Constructors in org.hipparchus.analysis.integration.gauss with parameters of type CalculusFieldElement Constructor Description FieldGaussIntegrator(T[] points, T[] weights)
Creates an integrator from the givenpoints
andweights
.SymmetricFieldGaussIntegrator(T[] points, T[] weights)
Creates an integrator from the givenpoints
andweights
. -
Uses of CalculusFieldElement in org.hipparchus.analysis.interpolation
Methods in org.hipparchus.analysis.interpolation with type parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>AkimaSplineInterpolator. interpolate(T[] xvals, T[] yvals)
Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateInterpolator. interpolate(T[] xval, T[] yval)
Compute an interpolating function for the dataset.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>LinearInterpolator. interpolate(T[] x, T[] y)
Computes a linear interpolating function for the data set.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>SplineInterpolator. interpolate(T[] x, T[] y)
Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
TBilinearInterpolatingFunction. value(T x, T y)
Compute the value for the function.<T extends CalculusFieldElement<T>>
TPiecewiseBicubicSplineInterpolatingFunction. value(T x, T y)
Compute the value for the function.Methods in org.hipparchus.analysis.interpolation with parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>AkimaSplineInterpolator. interpolate(T[] xvals, T[] yvals)
Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateInterpolator. interpolate(T[] xval, T[] yval)
Compute an interpolating function for the dataset.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>LinearInterpolator. interpolate(T[] x, T[] y)
Computes a linear interpolating function for the data set.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>SplineInterpolator. interpolate(T[] x, T[] y)
Computes an interpolating function for the data set. -
Uses of CalculusFieldElement in org.hipparchus.analysis.polynomials
Classes in org.hipparchus.analysis.polynomials with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldPolynomialFunction<T extends CalculusFieldElement<T>>
Immutable representation of a real polynomial function with real coefficients.class
FieldPolynomialSplineFunction<T extends CalculusFieldElement<T>>
Represents a polynomial spline function.static class
SmoothStepFactory.FieldSmoothStepFunction<T extends CalculusFieldElement<T>>
Smoothstep function as defined here.Methods in org.hipparchus.analysis.polynomials with type parameters of type CalculusFieldElement Modifier and Type Method Description protected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction. differentiate(T[] coefficients)
Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
TFieldPolynomialFunction. evaluate(T[] coefficients, T argument)
Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getClamp(Field<T> field)
Get theclamping smoothstep function
.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getCubic(Field<T> field)
Get thecubic smoothstep function
.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getFieldGeneralOrder(Field<T> field, int N)
Create asmoothstep function
of order 2N + 1.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getQuadratic(Field<T> field)
Get thequadratic smoothstep function
.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getQuintic(Field<T> field)
Get thequintic smoothstep function
.<T extends CalculusFieldElement<T>>
TPolynomialFunction. value(T t)
Compute the value of the function.<T extends CalculusFieldElement<T>>
TPolynomialFunctionNewtonForm. value(T t)
Compute the value of the function.<T extends CalculusFieldElement<T>>
TPolynomialSplineFunction. value(T t)
Compute the value of the function.Methods in org.hipparchus.analysis.polynomials that return CalculusFieldElement Modifier and Type Method Description protected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction. differentiate(T[] coefficients)
Returns the coefficients of the derivative of the polynomial with the given coefficients.T[]
FieldPolynomialFunction. getCoefficients()
Returns a copy of the coefficients array.T[]
FieldPolynomialSplineFunction. getKnots()
Get an array copy of the knot points.Methods in org.hipparchus.analysis.polynomials with parameters of type CalculusFieldElement Modifier and Type Method Description protected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction. differentiate(T[] coefficients)
Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
TFieldPolynomialFunction. evaluate(T[] coefficients, T argument)
Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.Constructors in org.hipparchus.analysis.polynomials with parameters of type CalculusFieldElement Constructor Description FieldPolynomialFunction(T[] c)
Construct a polynomial with the given coefficients.FieldPolynomialSplineFunction(T[] knots, FieldPolynomialFunction<T>[] polynomials)
Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of CalculusFieldElement in org.hipparchus.analysis.solvers
Classes in org.hipparchus.analysis.solvers with type parameters of type CalculusFieldElement Modifier and Type Interface Description interface
BracketedRealFieldUnivariateSolver<T extends CalculusFieldElement<T>>
Interface for(univariate real) root-finding algorithms
that maintain a bracketed solution.static class
BracketedRealFieldUnivariateSolver.Interval<T extends CalculusFieldElement<T>>
An interval of a function that brackets a root.class
FieldBracketingNthOrderBrentSolver<T extends CalculusFieldElement<T>>
This class implements a modification of the Brent algorithm.Methods in org.hipparchus.analysis.solvers with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)
This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBound
f(a) * f(b) <= 0
Iff
is continuous on[a,b]
, this means thata
andb
bracket a root off
.Methods in org.hipparchus.analysis.solvers that return CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)
This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBound
f(a) * f(b) <= 0
Iff
is continuous on[a,b]
, this means thata
andb
bracket a root off
. -
Uses of CalculusFieldElement in org.hipparchus.complex
Classes in org.hipparchus.complex with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldComplex<T extends CalculusFieldElement<T>>
Representation of a Complex number, i.e. a number which has both a real and imaginary part.class
FieldComplexField<T extends CalculusFieldElement<T>>
Representation of the complex numbers field.class
FieldComplexUnivariateIntegrator<T extends CalculusFieldElement<T>>
Wrapper to perform univariate complex integration using an underlying real integration algorithms.Classes in org.hipparchus.complex that implement CalculusFieldElement Modifier and Type Class Description class
Complex
Representation of a Complex number, i.e. a number which has both a real and imaginary part.class
FieldComplex<T extends CalculusFieldElement<T>>
Representation of a Complex number, i.e. a number which has both a real and imaginary part.Methods in org.hipparchus.complex with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equals(FieldComplex<T> x, FieldComplex<T> y)
Returnstrue
iff the values are equal as defined byequals(x, y, 1)
.static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equals(FieldComplex<T> x, FieldComplex<T> y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equals(FieldComplex<T> x, FieldComplex<T> y, int maxUlps)
Test for the floating-point equality between Complex objects.static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equalsWithRelativeTolerance(FieldComplex<T> x, FieldComplex<T> y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.static <T extends CalculusFieldElement<T>>
FieldComplexField<T>FieldComplexField. getField(Field<T> partsField)
Get the field for complex numbers.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getI(Field<T> field)
Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getInf(Field<T> field)
Get a complex number representing "+INF + INFi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getMinusI(Field<T> field)
Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getMinusOne(Field<T> field)
Get a complex number representing "-1.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getNaN(Field<T> field)
Get a complex number representing "NaN + NaNi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getOne(Field<T> field)
Get a complex number representing "1.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getPi(Field<T> field)
Get a complex number representing "π + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getZero(Field<T> field)
Get a complex number representing "0.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>ComplexUtils. polar2Complex(T r, T theta)
Creates a complex number from the given polar representation.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. valueOf(T realPart)
Create a complex number given only the real part.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. valueOf(T realPart, T imaginaryPart)
Create a complex number given the real and imaginary parts. -
Uses of CalculusFieldElement in org.hipparchus.dfp
Classes in org.hipparchus.dfp that implement CalculusFieldElement Modifier and Type Class Description class
Dfp
Decimal floating point library for Javaclass
DfpDec
Subclass ofDfp
which hides the radix-10000 artifacts of the superclass. -
Uses of CalculusFieldElement in org.hipparchus.geometry.euclidean.threed
Classes in org.hipparchus.geometry.euclidean.threed with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldLine<T extends CalculusFieldElement<T>>
The class represent lines in a three dimensional space.class
FieldRotation<T extends CalculusFieldElement<T>>
This class is a re-implementation ofRotation
usingCalculusFieldElement
.class
FieldVector3D<T extends CalculusFieldElement<T>>
This class is a re-implementation ofVector3D
usingCalculusFieldElement
.Methods in org.hipparchus.geometry.euclidean.threed with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, Vector3D v2)
Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. angle(Vector3D v1, FieldVector3D<T> v2)
Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
FieldRotation<T>FieldRotation. applyInverseTo(Rotation rOuter, FieldRotation<T> rInner)
Apply the inverse of a rotation to another rotation.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldRotation. applyInverseTo(Rotation r, FieldVector3D<T> u)
Apply the inverse of a rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldRotation<T>FieldRotation. applyTo(Rotation r1, FieldRotation<T> rInner)
Apply a rotation to another rotation.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldRotation. applyTo(Rotation r, FieldVector3D<T> u)
Apply a rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, Vector3D v2)
Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(Vector3D v1, FieldVector3D<T> v2)
Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldRotation. distance(FieldRotation<T> r1, FieldRotation<T> r2)
Compute the distance between two rotations.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, Vector3D v2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance(Vector3D v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, Vector3D v2)
Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance1(Vector3D v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, Vector3D v2)
Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceInf(Vector3D v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, Vector3D v2)
Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceSq(Vector3D v1, FieldVector3D<T> v2)
Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, Vector3D v2)
Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. dotProduct(Vector3D v1, FieldVector3D<T> v2)
Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldRotation<T>FieldRotation. getIdentity(Field<T> field)
Get identity rotation.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusI(Field<T> field)
Get opposite of the first canonical vector (coordinates: -1, 0, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusJ(Field<T> field)
Get opposite of the second canonical vector (coordinates: 0, -1, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusK(Field<T> field)
Get opposite of the third canonical vector (coordinates: 0, 0, -1).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNaN(Field<T> field)
Get a vector with all coordinates set to NaN.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNegativeInfinity(Field<T> field)
Get a vector with all coordinates set to negative infinity.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusI(Field<T> field)
Get first canonical vector (coordinates: 1, 0, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusJ(Field<T> field)
Get second canonical vector (coordinates: 0, 1, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusK(Field<T> field)
Get third canonical vector (coordinates: 0, 0, 1).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPositiveInfinity(Field<T> field)
Get a vector with all coordinates set to positive infinity.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getZero(Field<T> field)
Get null vector (coordinates: 0, 0, 0).Methods in org.hipparchus.geometry.euclidean.threed that return CalculusFieldElement Modifier and Type Method Description T[]
FieldRotation. getAngles(RotationOrder order, RotationConvention convention)
Get the Cardan or Euler angles corresponding to the instance.T[][]
FieldRotation. getMatrix()
Get the 3X3 matrix corresponding to the instanceT[]
FieldVector3D. toArray()
Get the vector coordinates as a dimension 3 array.Methods in org.hipparchus.geometry.euclidean.threed with parameters of type CalculusFieldElement Modifier and Type Method Description void
FieldRotation. applyInverseTo(double[] in, T[] out)
Apply the inverse of the rotation to a vector stored in an array.void
FieldRotation. applyInverseTo(T[] in, T[] out)
Apply the inverse of the rotation to a vector stored in an array.void
FieldRotation. applyTo(double[] in, T[] out)
Apply the rotation to a vector stored in an array.void
FieldRotation. applyTo(T[] in, T[] out)
Apply the rotation to a vector stored in an array.Constructors in org.hipparchus.geometry.euclidean.threed with parameters of type CalculusFieldElement Constructor Description FieldRotation(T[][] m, double threshold)
Build a rotation from a 3X3 matrix.FieldVector3D(T[] v)
Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.geometry.euclidean.twod
Classes in org.hipparchus.geometry.euclidean.twod with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldVector2D<T extends CalculusFieldElement<T>>
This class is a re-implementation ofVector2D
usingCalculusFieldElement
.Methods in org.hipparchus.geometry.euclidean.twod with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TFieldVector2D. angle(FieldVector2D<T> v1, FieldVector2D<T> v2)
Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. angle(FieldVector2D<T> v1, Vector2D v2)
Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. angle(Vector2D v1, FieldVector2D<T> v2)
Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance(FieldVector2D<T> p1, FieldVector2D<T> p2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance(FieldVector2D<T> p1, Vector2D p2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance(Vector2D p1, FieldVector2D<T> p2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance1(FieldVector2D<T> p1, FieldVector2D<T> p2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance1(FieldVector2D<T> p1, Vector2D p2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance1(Vector2D p1, FieldVector2D<T> p2)
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceInf(FieldVector2D<T> p1, FieldVector2D<T> p2)
Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceInf(FieldVector2D<T> p1, Vector2D p2)
Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceInf(Vector2D p1, FieldVector2D<T> p2)
Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceSq(FieldVector2D<T> p1, FieldVector2D<T> p2)
Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceSq(FieldVector2D<T> p1, Vector2D p2)
Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceSq(Vector2D p1, FieldVector2D<T> p2)
Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getMinusI(Field<T> field)
Get opposite of the first canonical vector (coordinates: -1).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getMinusJ(Field<T> field)
Get opposite of the second canonical vector (coordinates: 0, -1).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getNaN(Field<T> field)
Get a vector with all coordinates set to NaN.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getNegativeInfinity(Field<T> field)
Get a vector with all coordinates set to negative infinity.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getPlusI(Field<T> field)
Get first canonical vector (coordinates: 1, 0).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getPlusJ(Field<T> field)
Get second canonical vector (coordinates: 0, 1).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getPositiveInfinity(Field<T> field)
Get a vector with all coordinates set to positive infinity.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getZero(Field<T> field)
Get null vector (coordinates: 0, 0).static <T extends CalculusFieldElement<T>>
TFieldVector2D. orientation(FieldVector2D<T> p, FieldVector2D<T> q, FieldVector2D<T> r)
Compute the orientation of a triplet of points.Methods in org.hipparchus.geometry.euclidean.twod that return CalculusFieldElement Modifier and Type Method Description T[]
FieldVector2D. toArray()
Get the vector coordinates as a dimension 2 array.Constructors in org.hipparchus.geometry.euclidean.twod with parameters of type CalculusFieldElement Constructor Description FieldVector2D(T[] v)
Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.linear
Classes in org.hipparchus.linear with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldQRDecomposer<T extends CalculusFieldElement<T>>
Matrix decomposer using QR-decomposition.class
FieldQRDecomposition<T extends CalculusFieldElement<T>>
Calculates the QR-decomposition of a field matrix.Methods in org.hipparchus.linear with type parameters of type CalculusFieldElement Modifier and Type Method Description abstract <T extends CalculusFieldElement<T>>
intDependentVectorsHandler. manageDependent(Field<T> field, int index, List<FieldVector<T>> basis)
Manage a dependent vector.static <T extends CalculusFieldElement<T>>
List<FieldVector<T>>MatrixUtils. orthonormalize(Field<T> field, List<FieldVector<T>> independent, T threshold, DependentVectorsHandler handler)
Orthonormalize a list of vectors.Methods in org.hipparchus.linear with parameters of type CalculusFieldElement Modifier and Type Method Description protected void
FieldQRDecomposition. decompose(T[][] matrix)
Decompose matrix.protected void
FieldQRDecomposition. performHouseholderReflection(int minor, T[][] matrix)
Perform Householder reflection for a minor A(minor, minor) of A. -
Uses of CalculusFieldElement in org.hipparchus.ode
Classes in org.hipparchus.ode with type parameters of type CalculusFieldElement Modifier and Type Class Description class
AbstractFieldIntegrator<T extends CalculusFieldElement<T>>
Base class managing common boilerplate for all integrators.class
FieldDenseOutputModel<T extends CalculusFieldElement<T>>
This class stores all information provided by an ODE integrator during the integration process and build a continuous model of the solution from this.class
FieldEquationsMapper<T extends CalculusFieldElement<T>>
Class mapping the part of a complete state or derivative that pertains to a set of differential equations.class
FieldExpandableODE<T extends CalculusFieldElement<T>>
This class represents a combined set of first order differential equations, with at least a primary set of equations expandable by some sets of secondary equations.interface
FieldODEIntegrator<T extends CalculusFieldElement<T>>
This interface represents a first order integrator for differential equations.class
FieldODEState<T extends CalculusFieldElement<T>>
Container for time, main and secondary state vectors.class
FieldODEStateAndDerivative<T extends CalculusFieldElement<T>>
Container for time, main and secondary state vectors as well as their derivatives.interface
FieldOrdinaryDifferentialEquation<T extends CalculusFieldElement<T>>
This interface represents a first order differential equations set.interface
FieldSecondaryODE<T extends CalculusFieldElement<T>>
This interface allows users to add secondary differential equations to a primary set of differential equations.class
MultistepFieldIntegrator<T extends CalculusFieldElement<T>>
This class is the base class for multistep integrators for Ordinary Differential Equations.Fields in org.hipparchus.ode declared as CalculusFieldElement Modifier and Type Field Description protected T[]
MultistepFieldIntegrator. scaled
First scaled derivative (h y').Methods in org.hipparchus.ode that return CalculusFieldElement Modifier and Type Method Description T[]
AbstractFieldIntegrator. computeDerivatives(T t, T[] y)
Compute the derivatives and check the number of evaluations.T[]
FieldExpandableODE. computeDerivatives(T t, T[] y)
Get the current time derivative of the complete state vector.T[]
FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)
Get the current time derivative of the state vector.T[]
FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)
Compute the derivatives related to the secondary state parameters.protected T[][]
FieldODEState. copy(T[][] original)
Copy a two-dimensions array.T[]
FieldEquationsMapper. extractEquationData(int index, T[] complete)
Extract equation data from a complete state or derivative array.T[]
FieldODEStateAndDerivative. getCompleteDerivative()
Get complete derivative at time.T[]
FieldODEState. getCompleteState()
Get complete state at time.T[]
FieldODEStateAndDerivative. getPrimaryDerivative()
Get derivative of the primary state at time.T[]
FieldODEState. getPrimaryState()
Get primary state at time.T[]
FieldODEStateAndDerivative. getSecondaryDerivative(int index)
Get derivative of the secondary state at time.T[]
FieldODEState. getSecondaryState(int index)
Get secondary state at time.Methods in org.hipparchus.ode with parameters of type CalculusFieldElement Modifier and Type Method Description T[]
AbstractFieldIntegrator. computeDerivatives(T t, T[] y)
Compute the derivatives and check the number of evaluations.T[]
FieldExpandableODE. computeDerivatives(T t, T[] y)
Get the current time derivative of the complete state vector.T[]
FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)
Get the current time derivative of the state vector.T[]
FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)
Compute the derivatives related to the secondary state parameters.protected T[][]
FieldODEState. copy(T[][] original)
Copy a two-dimensions array.T[]
FieldEquationsMapper. extractEquationData(int index, T[] complete)
Extract equation data from a complete state or derivative array.default void
FieldOrdinaryDifferentialEquation. init(T t0, T[] y0, T finalTime)
Initialize equations at the start of an ODE integration.default void
FieldSecondaryODE. init(T t0, T[] primary0, T[] secondary0, T finalTime)
Initialize equations at the start of an ODE integration.protected abstract Array2DRowFieldMatrix<T>
MultistepFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.void
FieldEquationsMapper. insertEquationData(int index, T[] equationData, T[] complete)
Insert equation data into a complete state or derivative array.FieldODEStateAndDerivative<T>
FieldEquationsMapper. mapStateAndDerivative(T t, T[] y, T[] yDot)
Map flat arrays to a state and derivative.Constructors in org.hipparchus.ode with parameters of type CalculusFieldElement Constructor Description FieldODEState(T time, T[] primaryState)
Simple constructor.FieldODEState(T time, T[] primaryState, T[][] secondaryState)
Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative)
Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative, T[][] secondaryState, T[][] secondaryDerivative)
Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.ode.events
Classes in org.hipparchus.ode.events with type parameters of type CalculusFieldElement Modifier and Type Class Description class
AbstractFieldODEDetector<T extends AbstractFieldODEDetector<T,E>,E extends CalculusFieldElement<E>>
Base class for #@linkFieldODEEventDetector
.interface
FieldAdaptableInterval<T extends CalculusFieldElement<T>>
This interface represents an event checking interval that depends on state.class
FieldDetectorBasedEventState<T extends CalculusFieldElement<T>>
This class handles the state for oneevent handler
during integration steps.class
FieldEventOccurrence<T extends CalculusFieldElement<T>>
Class to hold the data related to an event occurrence that is needed to decide how to modify integration.class
FieldEventSlopeFilter<T extends FieldODEEventDetector<E>,E extends CalculusFieldElement<E>>
Wrapper used to detect only increasing or decreasing events.interface
FieldEventState<T extends CalculusFieldElement<T>>
This interface handles the state for either oneevent handler
or onestep end handler
during integration steps.interface
FieldODEEventDetector<T extends CalculusFieldElement<T>>
This interface represents a handler for discrete events triggered during ODE integration.interface
FieldODEEventHandler<T extends CalculusFieldElement<T>>
This interface represents a handler for discrete events triggered during ODE integration.interface
FieldODEStepEndHandler<T extends CalculusFieldElement<T>>
This interface represents a handler for discrete events triggered during ODE integration at each step end.class
FieldStepEndEventState<T extends CalculusFieldElement<T>>
This class handles the state for oneevent handler
that triggers at step end. -
Uses of CalculusFieldElement in org.hipparchus.ode.nonstiff
Classes in org.hipparchus.ode.nonstiff with type parameters of type CalculusFieldElement Modifier and Type Class Description class
AdamsBashforthFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements explicit Adams-Bashforth integrators for Ordinary Differential Equations.class
AdamsFieldIntegrator<T extends CalculusFieldElement<T>>
Base class forAdams-Bashforth
andAdams-Moulton
integrators.class
AdamsMoultonFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements implicit Adams-Moulton integrators for Ordinary Differential Equations.class
AdamsNordsieckFieldTransformer<T extends CalculusFieldElement<T>>
Transformer to Nordsieck vectors for Adams integrators.class
AdaptiveStepsizeFieldIntegrator<T extends CalculusFieldElement<T>>
This abstract class holds the common part of all adaptive stepsize integrators for Ordinary Differential Equations.class
ClassicalRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the classical fourth order Runge-Kutta integrator for Ordinary Differential Equations (it is the most often used Runge-Kutta method).class
DormandPrince54FieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the 5(4) Dormand-Prince integrator for Ordinary Differential Equations.class
DormandPrince853FieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the 8(5,3) Dormand-Prince integrator for Ordinary Differential Equations.class
EmbeddedRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.class
EulerFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements a simple Euler integrator for Ordinary Differential Equations.interface
FieldButcherArrayProvider<T extends CalculusFieldElement<T>>
This interface represents an integrator based on Butcher arrays.class
GillFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .class
HighamHall54FieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the 5(4) Higham and Hall integrator for Ordinary Differential Equations.class
LutherFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.class
MidpointFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements a second order Runge-Kutta integrator for Ordinary Differential Equations.class
RungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.class
ThreeEighthesFieldIntegrator<T extends CalculusFieldElement<T>>
This class implements the 3/8 fourth order Runge-Kutta integrator for Ordinary Differential Equations.Methods in org.hipparchus.ode.nonstiff with type parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
TStepsizeHelper. filterStep(T h, boolean forward, boolean acceptSmall)
Filter the integration step.static <T extends CalculusFieldElement<T>>
AdamsNordsieckFieldTransformer<T>AdamsNordsieckFieldTransformer. getInstance(Field<T> field, int nSteps)
Get the Nordsieck transformer for a given field and number of steps.<T extends CalculusFieldElement<T>>
TStepsizeHelper. getTolerance(int i, T scale)
Get the tolerance for one component.Methods in org.hipparchus.ode.nonstiff that return CalculusFieldElement Modifier and Type Method Description T[][]
ClassicalRungeKuttaFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
DormandPrince54FieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
DormandPrince853FieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
EulerFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
FieldButcherArrayProvider. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
GillFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
HighamHall54FieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
LutherFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
MidpointFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
ThreeEighthesFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[]
ClassicalRungeKuttaFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
DormandPrince54FieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
DormandPrince853FieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
EulerFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
FieldButcherArrayProvider. getB()
Get the external weights for the high order method from Butcher array.T[]
GillFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
HighamHall54FieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
LutherFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
MidpointFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
ThreeEighthesFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
ClassicalRungeKuttaFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
DormandPrince54FieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
DormandPrince853FieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
EulerFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
FieldButcherArrayProvider. getC()
Get the time steps from Butcher array (without the first zero).T[]
GillFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
HighamHall54FieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
LutherFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
MidpointFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
ThreeEighthesFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)
Fast computation of a single step of ODE integration.Methods in org.hipparchus.ode.nonstiff with parameters of type CalculusFieldElement Modifier and Type Method Description protected org.hipparchus.ode.nonstiff.ClassicalRungeKuttaFieldStateInterpolator<T>
ClassicalRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince54FieldStateInterpolator<T>
DormandPrince54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince853FieldStateInterpolator<T>
DormandPrince853FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>
EmbeddedRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.EulerFieldStateInterpolator<T>
EulerFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.GillFieldStateInterpolator<T>
GillFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.HighamHall54FieldStateInterpolator<T>
HighamHall54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.LutherFieldStateInterpolator<T>
LutherFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.MidpointFieldStateInterpolator<T>
MidpointFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>
RungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.ThreeEighthesFieldStateInterpolator<T>
ThreeEighthesFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected double
AdamsBashforthFieldIntegrator. errorEstimation(T[] previousState, T predictedTime, T[] predictedState, T[] predictedScaled, FieldMatrix<T> predictedNordsieck)
Estimate error.protected abstract double
AdamsFieldIntegrator. errorEstimation(T[] previousState, T predictedTime, T[] predictedState, T[] predictedScaled, FieldMatrix<T> predictedNordsieck)
Estimate error.protected double
AdamsMoultonFieldIntegrator. errorEstimation(T[] previousState, T predictedTime, T[] predictedState, T[] predictedScaled, FieldMatrix<T> predictedNordsieck)
Estimate error.protected double
DormandPrince54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected double
DormandPrince853FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected abstract double
EmbeddedRungeKuttaFieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected double
HighamHall54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected org.hipparchus.ode.nonstiff.AdamsFieldStateInterpolator<T>
AdamsBashforthFieldIntegrator. finalizeStep(T stepSize, T[] predictedY, T[] predictedScaled, Array2DRowFieldMatrix<T> predictedNordsieck, boolean isForward, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> equationsMapper)
Finalize the step.protected abstract org.hipparchus.ode.nonstiff.AdamsFieldStateInterpolator<T>
AdamsFieldIntegrator. finalizeStep(T stepSize, T[] predictedState, T[] predictedScaled, Array2DRowFieldMatrix<T> predictedNordsieck, boolean isForward, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> equationsMapper)
Finalize the step.protected org.hipparchus.ode.nonstiff.AdamsFieldStateInterpolator<T>
AdamsMoultonFieldIntegrator. finalizeStep(T stepSize, T[] predictedY, T[] predictedScaled, Array2DRowFieldMatrix<T> predictedNordsieck, boolean isForward, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> equationsMapper)
Finalize the step.protected Array2DRowFieldMatrix<T>
AdamsFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.Array2DRowFieldMatrix<T>
AdamsNordsieckFieldTransformer. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.double
AdaptiveStepsizeFieldIntegrator. initializeStep(boolean forward, int order, T[] scale, FieldODEStateAndDerivative<T> state0, FieldEquationsMapper<T> mapper)
Initialize the integration step.T[]
RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)
Fast computation of a single step of ODE integration.void
AdamsFieldIntegrator. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)
Update the high order scaled derivatives Adams integrators (phase 2).void
AdamsNordsieckFieldTransformer. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)
Update the high order scaled derivatives Adams integrators (phase 2). -
Uses of CalculusFieldElement in org.hipparchus.ode.sampling
Classes in org.hipparchus.ode.sampling with type parameters of type CalculusFieldElement Modifier and Type Class Description class
AbstractFieldODEStateInterpolator<T extends CalculusFieldElement<T>>
This abstract class represents an interpolator over the last step during an ODE integration.interface
FieldODEFixedStepHandler<T extends CalculusFieldElement<T>>
This interface represents a handler that should be called after each successful fixed step.interface
FieldODEStateInterpolator<T extends CalculusFieldElement<T>>
This interface represents an interpolator over the last step during an ODE integration.interface
FieldODEStepHandler<T extends CalculusFieldElement<T>>
This interface represents a handler that should be called after each successful step.class
FieldStepNormalizer<T extends CalculusFieldElement<T>>
This class wraps an object implementingFieldODEFixedStepHandler
into aFieldODEStepHandler
. -
Uses of CalculusFieldElement in org.hipparchus.special
Methods in org.hipparchus.special with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TGamma. digamma(T x)
Computes the digamma function of x.static <T extends CalculusFieldElement<T>>
TErf. erf(T x)
Returns the error function. \[ \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{t=0}^x e^{-t^2}dt \]static <T extends CalculusFieldElement<T>>
TErf. erf(T x1, T x2)
Returns the difference between erf(x1) and erf(x2).static <T extends CalculusFieldElement<T>>
TErf. erfc(T x)
Returns the complementary error function. \[ erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2}dt = 1 - erf(x) \]static <T extends CalculusFieldElement<T>>
TErf. erfcInv(T x)
Returns the inverse erfc.static <T extends CalculusFieldElement<T>>
TErf. erfInv(T x)
Returns the inverse erf.static <T extends CalculusFieldElement<T>>
TGamma. gamma(T x)
Returns the value of Γ(x).static <T extends CalculusFieldElement<T>>
TGamma. invGamma1pm1(T x)
Returns the value of 1 / Γ(1 + x) - 1 for -0.5 ≤ x ≤ 1.5.static <T extends CalculusFieldElement<T>>
TGamma. lanczos(T x)
Returns the Lanczos approximation used to compute the gamma function.static <T extends CalculusFieldElement<T>>
TGamma. logGamma(T x)
Returns the value of log Γ(x) for x > 0.static <T extends CalculusFieldElement<T>>
TGamma. logGamma1p(T x)
Returns the value of log Γ(1 + x) for -0.5 ≤ x ≤ 1.5.static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaP(T a, T x)
Returns the regularized gamma function P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaP(T a, T x, double epsilon, int maxIterations)
Returns the regularized gamma function P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaQ(T a, T x)
Returns the regularized gamma function Q(a, x) = 1 - P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaQ(T a, T x, double epsilon, int maxIterations)
Returns the regularized gamma function Q(a, x) = 1 - P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. trigamma(T x)
Computes the trigamma function of x. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.carlson
Methods in org.hipparchus.special.elliptic.carlson with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rC(FieldComplex<T> x, FieldComplex<T> y)
Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rC(T x, T y)
Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rD(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z)
Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rD(T x, T y, T z)
Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rF(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z)
Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rF(T x, T y, T z)
Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rG(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z)
Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rG(T x, T y, T z)
Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rJ(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p)
Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rJ(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p, FieldComplex<T> delta)
Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rJ(T x, T y, T z, T p)
Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rJ(T x, T y, T z, T p, T delta)
Compute Carlson elliptic integral RJ. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.jacobi
Classes in org.hipparchus.special.elliptic.jacobi with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldCopolarC<T extends CalculusFieldElement<T>>
Copolar trio with pole at point c in Glaisher’s Notation.class
FieldCopolarD<T extends CalculusFieldElement<T>>
Copolar trio with pole at point d in Glaisher’s Notation.class
FieldCopolarN<T extends CalculusFieldElement<T>>
Copolar trio with pole at point n in Glaisher’s Notation.class
FieldCopolarS<T extends CalculusFieldElement<T>>
Copolar trio with pole at point s in Glaisher’s Notation.class
FieldJacobiElliptic<T extends CalculusFieldElement<T>>
Computation of Jacobi elliptic functions.class
FieldJacobiTheta<T extends CalculusFieldElement<T>>
Algorithm computing Jacobi theta functions.class
FieldTheta<T extends CalculusFieldElement<T>>
Values ofJacobi theta
functions.Methods in org.hipparchus.special.elliptic.jacobi with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<FieldComplex<T>>JacobiEllipticBuilder. build(FieldComplex<T> m)
Build an algorithm for computing Jacobi elliptic functions.static <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<T>JacobiEllipticBuilder. build(T m)
Build an algorithm for computing Jacobi elliptic functions. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.legendre
Methods in org.hipparchus.special.elliptic.legendre with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigD(FieldComplex<T> m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigD(FieldComplex<T> phi, FieldComplex<T> m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigD(T m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigD(T phi, T m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigE(FieldComplex<T> m)
Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigE(FieldComplex<T> phi, FieldComplex<T> m)
Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigE(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigE(T m)
Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigE(T phi, T m)
Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigF(FieldComplex<T> phi, FieldComplex<T> m)
Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigF(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigF(T phi, T m)
Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigK(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigK(T m)
Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigKPrime(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigKPrime(T m)
Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigPi(FieldComplex<T> n, FieldComplex<T> m)
Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigPi(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigPi(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigPi(T n, T m)
Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigPi(T n, T phi, T m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. nome(T m)
Get the nome q. -
Uses of CalculusFieldElement in org.hipparchus.util
Classes in org.hipparchus.util with type parameters of type CalculusFieldElement Modifier and Type Class Description class
FieldTuple<T extends CalculusFieldElement<T>>
This class allows to perform the same computation of all components of a Tuple at once.Classes in org.hipparchus.util that implement CalculusFieldElement Modifier and Type Class Description class
Binary64
This class wraps adouble
value in an object.class
FieldTuple<T extends CalculusFieldElement<T>>
This class allows to perform the same computation of all components of a Tuple at once.class
Tuple
This class allows to perform the same computation of all components of a Tuple at once.Methods in org.hipparchus.util with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TFastMath. abs(T x)
Absolute value.static <T extends CalculusFieldElement<T>>
TFastMath. acos(T x)
Compute the arc cosine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. acosh(T a)
Compute the inverse hyperbolic cosine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. asin(T x)
Compute the arc sine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. asinh(T a)
Compute the inverse hyperbolic sine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. atan(T x)
Arctangent functionstatic <T extends CalculusFieldElement<T>>
TFastMath. atan2(T y, T x)
Two arguments arctangent functionstatic <T extends CalculusFieldElement<T>>
TFastMath. atanh(T a)
Compute the inverse hyperbolic tangent of a number.static <T extends CalculusFieldElement<T>>
TFastMath. cbrt(T x)
Compute the cubic root of a number.static <T extends CalculusFieldElement<T>>
TFastMath. ceil(T x)
Get the smallest whole number larger than x.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkEqualLength(T[] a, T[] b)
Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkEqualLength(T[] a, T[] b, boolean abort)
Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val)
Check that the given array is sorted in strictly increasing order.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict)
Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict, boolean abort)
Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
TFastMath. copySign(T magnitude, double sign)
Returns the first argument with the sign of the second argument.static <T extends CalculusFieldElement<T>>
TFastMath. copySign(T magnitude, T sign)
Returns the first argument with the sign of the second argument.static <T extends CalculusFieldElement<T>>
TFastMath. cos(T x)
Cosine function.static <T extends CalculusFieldElement<T>>
TFastMath. cosh(T x)
Compute the hyperbolic cosine of a number.static <S extends CalculusFieldElement<S>>
FieldSinCos<S>FieldSinCos. difference(FieldSinCos<S> scAlpha, FieldSinCos<S> scBeta)
Compute sine and cosine of angles difference.static <S extends CalculusFieldElement<S>>
FieldSinhCosh<S>FieldSinhCosh. difference(FieldSinhCosh<S> schAlpha, FieldSinhCosh<S> schBeta)
Compute hyperbolic sine and hyperbolic cosine of angles difference.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x)
Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, double epsilon)
Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, double epsilon, int maxIterations)
Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, int maxIterations)
Evaluates the continued fraction at the value x.static <T extends CalculusFieldElement<T>>
TFastMath. exp(T x)
Exponential function.static <T extends CalculusFieldElement<T>>
TFastMath. expm1(T x)
Compute exp(x) - 1static <T extends CalculusFieldElement<T>>
TFastMath. floor(T x)
Get the largest whole number smaller than x.abstract <T extends CalculusFieldElement<T>>
TFieldContinuedFraction. getA(int n, T x)
Access the n-th a coefficient of the continued fraction.abstract <T extends CalculusFieldElement<T>>
TFieldContinuedFraction. getB(int n, T x)
Access the n-th b coefficient of the continued fraction.static <T extends CalculusFieldElement<T>>
TFastMath. hypot(T x, T y)
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
TFastMath. IEEEremainder(T dividend, double divisor)
Computes the remainder as prescribed by the IEEE 754 standard.static <T extends CalculusFieldElement<T>>
TFastMath. IEEEremainder(T dividend, T divisor)
Computes the remainder as prescribed by the IEEE 754 standard.static <T extends CalculusFieldElement<T>>
TFastMath. log(T x)
Natural logarithm.static <T extends CalculusFieldElement<T>>
TFastMath. log10(T x)
Compute the base 10 logarithm.static <T extends CalculusFieldElement<T>>
TFastMath. log1p(T x)
Computes log(1 + x).static <T extends CalculusFieldElement<T>>
TFastMath. max(T a, double b)
Compute the maximum of two valuesstatic <T extends CalculusFieldElement<T>>
TFastMath. max(T a, T b)
Compute the maximum of two valuesstatic <T extends CalculusFieldElement<T>>
TMathUtils. max(T e1, T e2)
Find the maximum of two field elements.static <T extends CalculusFieldElement<T>>
TFastMath. min(T a, double b)
Compute the minimum of two valuesstatic <T extends CalculusFieldElement<T>>
TFastMath. min(T a, T b)
Compute the minimum of two valuesstatic <T extends CalculusFieldElement<T>>
TMathUtils. min(T e1, T e2)
Find the minimum of two field elements.static <T extends CalculusFieldElement<T>>
doubleFastMath. norm(T x)
Norm.static <T extends CalculusFieldElement<T>>
TMathUtils. normalizeAngle(T a, T center)
Normalize an angle in a 2π wide interval around a center value.static <T extends CalculusFieldElement<T>>
TFastMath. pow(T x, double y)
Power function.static <T extends CalculusFieldElement<T>>
TFastMath. pow(T d, int e)
Raise a double to an int power.static <T extends CalculusFieldElement<T>>
TFastMath. pow(T x, T y)
Power function.static <T extends CalculusFieldElement<T>>
TFastMath. rint(T x)
Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.static <T extends CalculusFieldElement<T>>
longFastMath. round(T x)
Get the closest long to x.static <T extends CalculusFieldElement<T>>
TFastMath. scalb(T d, int n)
Multiply a double number by a power of 2.static <T extends CalculusFieldElement<T>>
TFastMath. sign(T a)
Compute the sign of a number.static <T extends CalculusFieldElement<T>>
TFastMath. sin(T x)
Sine function.static <T extends CalculusFieldElement<T>>
FieldSinCos<T>FastMath. sinCos(T x)
Combined Sine and Cosine function.static <T extends CalculusFieldElement<T>>
TFastMath. sinh(T x)
Compute the hyperbolic sine of a number.static <T extends CalculusFieldElement<T>>
FieldSinhCosh<T>FastMath. sinhCosh(T x)
Combined hyperbolic sine and hyperbolic cosine function.static <T extends CalculusFieldElement<T>>
TFastMath. sqrt(T a)
Compute the square root of a number.static <S extends CalculusFieldElement<S>>
FieldSinCos<S>FieldSinCos. sum(FieldSinCos<S> scAlpha, FieldSinCos<S> scBeta)
Compute sine and cosine of angles sum.static <S extends CalculusFieldElement<S>>
FieldSinhCosh<S>FieldSinhCosh. sum(FieldSinhCosh<S> schAlpha, FieldSinhCosh<S> schBeta)
Compute hyperbolic sine and hyperbolic cosine of angles sum.static <T extends CalculusFieldElement<T>>
TFastMath. tan(T x)
Tangent function.static <T extends CalculusFieldElement<T>>
TFastMath. tanh(T x)
Compute the hyperbolic tangent of a number.static <T extends CalculusFieldElement<T>>
TFastMath. toDegrees(T x)
Convert radians to degrees, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
TFastMath. toRadians(T x)
Convert degrees to radians, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
TFastMath. ulp(T x)
Compute least significant bit (Unit in Last Position) for a number.Methods in org.hipparchus.util that return CalculusFieldElement Modifier and Type Method Description T[]
FieldTuple. getComponents()
Get all components of the tuple.Methods in org.hipparchus.util with parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
voidMathArrays. checkEqualLength(T[] a, T[] b)
Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkEqualLength(T[] a, T[] b, boolean abort)
Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val)
Check that the given array is sorted in strictly increasing order.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict)
Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict, boolean abort)
Check that the given array is sorted.Constructors in org.hipparchus.util with parameters of type CalculusFieldElement Constructor Description FieldTuple(T... x)
Creates a new instance from its components.
-