Uses of Interface
org.hipparchus.CalculusFieldElement
-
Packages that use CalculusFieldElement Package Description org.hipparchus.analysis Parent package for common numerical analysis procedures, including root finding, function interpolation and integration.org.hipparchus.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.hipparchus.analysis.integration Numerical integration (quadrature) algorithms for univariate real functions.org.hipparchus.analysis.integration.gauss Gauss family of quadrature schemes.org.hipparchus.analysis.interpolation Univariate real functions interpolation algorithms.org.hipparchus.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.complex Complex number type and implementations of complex transcendental functions.org.hipparchus.dfp Decimal floating point library for Javaorg.hipparchus.geometry.euclidean.threed This package provides basic 3D geometry components.org.hipparchus.geometry.euclidean.twod This package provides basic 2D geometry components.org.hipparchus.linear Linear algebra support.org.hipparchus.ode This package provides classes to solve Ordinary Differential Equations problems.org.hipparchus.ode.events Eventsorg.hipparchus.ode.nonstiff This package provides classes to solve non-stiff Ordinary Differential Equations problems.org.hipparchus.ode.sampling This package provides classes to handle sampling steps during Ordinary Differential Equations integration.org.hipparchus.special Implementations of special functions such as Beta and Gamma.org.hipparchus.special.elliptic.carlson Implementations of Carlson elliptic integrals.org.hipparchus.special.elliptic.jacobi Implementations of Jacobi elliptic functions.org.hipparchus.special.elliptic.legendre Implementations of Legendre elliptic integrals.org.hipparchus.util Convenience routines and common data structures used throughout the Hipparchus library. -
-
Uses of CalculusFieldElement in org.hipparchus.analysis
Classes in org.hipparchus.analysis with type parameters of type CalculusFieldElement Modifier and Type Interface Description interfaceCalculusFieldBivariateFunction<T extends CalculusFieldElement<T>>An interface representing a bivariate field function.interfaceCalculusFieldMultivariateFunction<T extends CalculusFieldElement<T>>An interface representing a scalar multivariate function.interfaceCalculusFieldMultivariateMatrixFunction<T extends CalculusFieldElement<T>>An interface representing a matrix multivariate function.interfaceCalculusFieldMultivariateVectorFunction<T extends CalculusFieldElement<T>>An interface representing a vector multivariate function.interfaceCalculusFieldUnivariateFunction<T extends CalculusFieldElement<T>>An interface representing a univariate real function.interfaceCalculusFieldUnivariateMatrixFunction<T extends CalculusFieldElement<T>>An interface representing a univariate matrix function.interfaceCalculusFieldUnivariateVectorFunction<T extends CalculusFieldElement<T>>An interface representing a univariate vectorial function for any field type.Methods in org.hipparchus.analysis with type parameters of type CalculusFieldElement Modifier and Type Method Description default <T extends CalculusFieldElement<T>>
CalculusFieldBivariateFunction<T>FieldBivariateFunction. toCalculusFieldBivariateFunction(Field<T> field)Convert to aCalculusFieldBivariateFunctionwith a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateFunction<T>FieldMultivariateFunction. toCalculusFieldMultivariateFunction(Field<T> field)Convert to aCalculusFieldMultivariateFunctionwith a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateMatrixFunction<T>FieldMultivariateMatrixFunction. toCalculusFieldMultivariateMatrixFunction(Field<T> field)Convert to aCalculusFieldMultivariateMatrixFunctionwith a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateVectorFunction<T>FieldMultivariateVectorFunction. toCalculusFieldMultivariateVectorFunction(Field<T> field)Convert to aCalculusFieldMultivariateVectorFunctionwith a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateFunction. toCalculusFieldUnivariateFunction(Field<T> field)Convert to aCalculusFieldUnivariateFunctionwith a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateMatrixFunction<T>FieldUnivariateMatrixFunction. toCalculusFieldUnivariateMatrixFunction(Field<T> field)Convert to aCalculusFieldUnivariateMatrixFunctionwith a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateVectorFunction<T>FieldUnivariateVectorFunction. toCalculusFieldUnivariateVectorFunction(Field<T> field)Convert to aCalculusFieldUnivariateVectorFunctionwith a specific type.<T extends CalculusFieldElement<T>>
TFieldBivariateFunction. value(T x, T y)Compute the value for the function.<T extends CalculusFieldElement<T>>
TFieldMultivariateFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
TFieldUnivariateFunction. value(T x)Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)Compute the value for the function.<T extends CalculusFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)Compute the value for the function.Methods in org.hipparchus.analysis that return CalculusFieldElement Modifier and Type Method Description T[][]CalculusFieldMultivariateMatrixFunction. value(T... x)Compute the value of the function.T[]CalculusFieldMultivariateVectorFunction. value(T... x)Compute the value of the function.T[][]CalculusFieldUnivariateMatrixFunction. value(T x)Compute the value for the function.T[]CalculusFieldUnivariateVectorFunction. value(T x)Compute the value for the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)Compute the value for the function.<T extends CalculusFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)Compute the value for the function.Methods in org.hipparchus.analysis with parameters of type CalculusFieldElement Modifier and Type Method Description TCalculusFieldMultivariateFunction. value(T... x)Compute the value of the function.T[][]CalculusFieldMultivariateMatrixFunction. value(T... x)Compute the value of the function.T[]CalculusFieldMultivariateVectorFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
TFieldMultivariateFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction. value(T... x)Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction. value(T... x)Compute the value of the function. -
Uses of CalculusFieldElement in org.hipparchus.analysis.differentiation
Classes in org.hipparchus.analysis.differentiation with type parameters of type CalculusFieldElement Modifier and Type Interface Description interfaceDerivative<T extends CalculusFieldElement<T>>Interface representing both the value and the differentials of a function.classFDSFactory<T extends CalculusFieldElement<T>>Factory forFieldDerivativeStructure.static classFDSFactory.DerivativeField<T extends CalculusFieldElement<T>>Field for {link FieldDerivativeStructure} instances.interfaceFieldDerivative<S extends CalculusFieldElement<S>,T extends FieldDerivative<S,T>>Interface representing both the value and the differentials of a function.classFieldDerivativeStructure<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classFieldGradient<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classFieldGradientField<T extends CalculusFieldElement<T>>Field forGradientinstances.classFieldTaylorMap<T extends CalculusFieldElement<T>>Container for a Taylor map.classFieldUnivariateDerivative<S extends CalculusFieldElement<S>,T extends FieldUnivariateDerivative<S,T>>Abstract class representing both the value and the differentials of a function.classFieldUnivariateDerivative1<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classFieldUnivariateDerivative1Field<T extends CalculusFieldElement<T>>Field forFieldUnivariateDerivative1instances.classFieldUnivariateDerivative2<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classFieldUnivariateDerivative2Field<T extends CalculusFieldElement<T>>Field forFieldUnivariateDerivative2instances.Subinterfaces of CalculusFieldElement in org.hipparchus.analysis.differentiation Modifier and Type Interface Description interfaceDerivative<T extends CalculusFieldElement<T>>Interface representing both the value and the differentials of a function.interfaceFieldDerivative<S extends CalculusFieldElement<S>,T extends FieldDerivative<S,T>>Interface representing both the value and the differentials of a function.Classes in org.hipparchus.analysis.differentiation that implement CalculusFieldElement Modifier and Type Class Description classDerivativeStructureClass representing both the value and the differentials of a function.classFieldDerivativeStructure<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classFieldGradient<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classFieldUnivariateDerivative<S extends CalculusFieldElement<S>,T extends FieldUnivariateDerivative<S,T>>Abstract class representing both the value and the differentials of a function.classFieldUnivariateDerivative1<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classFieldUnivariateDerivative2<T extends CalculusFieldElement<T>>Class representing both the value and the differentials of a function.classGradientClass representing both the value and the differentials of a function.classSparseGradientFirst derivative computation with large number of variables.classUnivariateDerivative<T extends UnivariateDerivative<T>>Abstract class representing both the value and the differentials of a function.classUnivariateDerivative1Class representing both the value and the differentials of a function.classUnivariateDerivative2Class representing both the value and the differentials of a function.Methods in org.hipparchus.analysis.differentiation with type parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform addition of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)Compute two arguments arc tangent of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x)Two arguments arc tangent operation.<T extends CalculusFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient. constant(int freeParameters, T value)Build an instance corresponding to a constant value.<T extends CalculusFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform division of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exponential of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exp(x) - 1 of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldGradientField<T>FieldGradientField. getField(Field<T> valueField, int parameters)Get the field for number of free parameters.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1Field<T>FieldUnivariateDerivative1Field. getUnivariateDerivative1Field(Field<T> valueField)Get the univariate derivative field corresponding to a value field.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative2Field<T>FieldUnivariateDerivative2Field. getUnivariateDerivative2Field(Field<T> valueField)Get the univariate derivative field corresponding to a value field.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y)Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)Compute natural logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)Computes base 10 logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)Computes shifted logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform multiplication of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)Compute power of a double to a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute integer power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)Compute power of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. pow(double a, FieldDerivativeStructure<T> x)Compute ax where a is a double and x aFieldDerivativeStructurestatic <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient. pow(double a, FieldGradient<T> x)Compute ax where a is a double and x aFieldGradientstatic <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1<T>FieldUnivariateDerivative1. pow(double a, FieldUnivariateDerivative1<T> x)Compute ax where a is a double and x aFieldUnivariateDerivative1static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative2<T>FieldUnivariateDerivative2. pow(double a, FieldUnivariateDerivative2<T> x)Compute ax where a is a double and x aFieldUnivariateDerivative2<T extends CalculusFieldElement<T>>
voidDSCompiler. rebase(T[] ds, int dsOffset, DSCompiler baseCompiler, T[] p, T[] result, int resultOffset)Rebase derivative structure with respect to low level parameter functions.<T extends CalculusFieldElement<T>>
voidDSCompiler. reciprocal(T[] operand, int operandOffset, T[] result, int resultOffset)Compute reciprocal of derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform remainder of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute nth root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)Compute combined sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinhCosh(T[] operand, int operandOffset, T[] sinh, int sinhOffset, T[] cosh, int coshOffset)Compute combined hyperbolic sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sqrt(T[] operand, int operandOffset, T[] result, int resultOffset)Compute square root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform subtraction of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)Evaluate Taylor expansion of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient. variable(int freeParameters, int index, T value)Build aGradientrepresenting a variable.Methods in org.hipparchus.analysis.differentiation that return CalculusFieldElement Modifier and Type Method Description T[]FieldDerivativeStructure. getAllDerivatives()Get all partial derivatives.T[]FieldGradient. getGradient()Get the gradient part of the function.T[]FieldTaylorMap. getPoint()Get the point at which map is evaluated.T[]FieldTaylorMap. value(double... deltaP)Evaluate Taylor expansion of the map at some offset.T[]FieldTaylorMap. value(T... deltaP)Evaluate Taylor expansion of the map at some offset.Methods in org.hipparchus.analysis.differentiation with parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform addition of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)Compute two arguments arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic tangent of a derivative structure.FieldDerivativeStructure<T>FDSFactory. build(T... derivatives)Build aFieldDerivativeStructurefrom all its derivatives.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.<T extends CalculusFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.FieldDerivativeStructure<T>FieldDerivativeStructure. compose(T... f)Compute composition of the instance by a univariate function.<T extends CalculusFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform division of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exponential of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exp(x) - 1 of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.FieldDerivativeStructure<T>FieldDerivativeStructure. linearCombination(T[] a, FieldDerivativeStructure<T>[] b)Compute a linear combination.FieldGradient<T>FieldGradient. linearCombination(T[] a, FieldGradient<T>[] b)Compute a linear combination.FieldUnivariateDerivative1<T>FieldUnivariateDerivative1. linearCombination(T[] a, FieldUnivariateDerivative1<T>[] b)Compute a linear combination.FieldUnivariateDerivative2<T>FieldUnivariateDerivative2. linearCombination(T[] a, FieldUnivariateDerivative2<T>[] b)Compute a linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)Compute natural logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)Computes base 10 logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)Computes shifted logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform multiplication of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)Compute power of a double to a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute integer power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. rebase(T[] ds, int dsOffset, DSCompiler baseCompiler, T[] p, T[] result, int resultOffset)Rebase derivative structure with respect to low level parameter functions.<T extends CalculusFieldElement<T>>
voidDSCompiler. reciprocal(T[] operand, int operandOffset, T[] result, int resultOffset)Compute reciprocal of derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform remainder of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute nth root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)Compute combined sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sinhCosh(T[] operand, int operandOffset, T[] sinh, int sinhOffset, T[] cosh, int coshOffset)Compute combined hyperbolic sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. sqrt(T[] operand, int operandOffset, T[] result, int resultOffset)Compute square root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform subtraction of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)Evaluate Taylor expansion of a derivative structure.TFieldDerivativeStructure. taylor(T... delta)Evaluate Taylor expansion of a derivative structure.TFieldGradient. taylor(T... delta)Evaluate Taylor expansion of a gradient.T[]FieldTaylorMap. value(T... deltaP)Evaluate Taylor expansion of the map at some offset.Constructors in org.hipparchus.analysis.differentiation with parameters of type CalculusFieldElement Constructor Description FieldGradient(T value, T... gradient)Build an instance with values and derivative.FieldTaylorMap(T[] point, FieldDerivativeStructure<T>[] functions)Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.analysis.integration
Classes in org.hipparchus.analysis.integration with type parameters of type CalculusFieldElement Modifier and Type Class Description classBaseAbstractFieldUnivariateIntegrator<T extends CalculusFieldElement<T>>Provide a default implementation for several generic functions.classFieldMidPointIntegrator<T extends CalculusFieldElement<T>>Implements the Midpoint Rule for integration of real univariate functions.classFieldRombergIntegrator<T extends CalculusFieldElement<T>>Implements the Romberg Algorithm for integration of real univariate functions.classFieldSimpsonIntegrator<T extends CalculusFieldElement<T>>Implements Simpson's Rule for integration of real univariate functions.classFieldTrapezoidIntegrator<T extends CalculusFieldElement<T>>Implements the Trapezoid Rule for integration of real univariate functions.interfaceFieldUnivariateIntegrator<T extends CalculusFieldElement<T>>Interface for univariate real integration algorithms.classIterativeLegendreFieldGaussIntegrator<T extends CalculusFieldElement<T>>This algorithm divides the integration interval into equally-sized sub-interval and on each of them performs a Legendre-Gauss quadrature. -
Uses of CalculusFieldElement in org.hipparchus.analysis.integration.gauss
Classes in org.hipparchus.analysis.integration.gauss with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldAbstractRuleFactory<T extends CalculusFieldElement<T>>Base class for rules that determines the integration nodes and their weights.classFieldGaussIntegrator<T extends CalculusFieldElement<T>>Class that implements the Gaussian rule forintegratinga weighted function.classFieldGaussIntegratorFactory<T extends CalculusFieldElement<T>>Class that provides different ways to compute the nodes and weights to be used by theGaussian integration rule.classFieldHermiteRuleFactory<T extends CalculusFieldElement<T>>Factory that creates a Gauss-type quadrature rule using Hermite polynomials of the first kind.classFieldLaguerreRuleFactory<T extends CalculusFieldElement<T>>Factory that creates Gauss-type quadrature rule using Laguerre polynomials.classFieldLegendreRuleFactory<T extends CalculusFieldElement<T>>Factory that creates Gauss-type quadrature rule using Legendre polynomials.classSymmetricFieldGaussIntegrator<T extends CalculusFieldElement<T>>This class's implementsintegratemethod assuming that the integral is symmetric about 0.Methods in org.hipparchus.analysis.integration.gauss that return CalculusFieldElement Modifier and Type Method Description protected T[]FieldAbstractRuleFactory. findRoots(int n, CalculusFieldUnivariateFunction<T> ratioEvaluator)Computes roots of the associated orthogonal polynomials.Methods in org.hipparchus.analysis.integration.gauss with parameters of type CalculusFieldElement Modifier and Type Method Description protected voidFieldAbstractRuleFactory. enforceSymmetry(T[] roots)Enforce symmetry of roots.Constructors in org.hipparchus.analysis.integration.gauss with parameters of type CalculusFieldElement Constructor Description FieldGaussIntegrator(T[] points, T[] weights)Creates an integrator from the givenpointsandweights.SymmetricFieldGaussIntegrator(T[] points, T[] weights)Creates an integrator from the givenpointsandweights. -
Uses of CalculusFieldElement in org.hipparchus.analysis.interpolation
Methods in org.hipparchus.analysis.interpolation with type parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>AkimaSplineInterpolator. interpolate(T[] xvals, T[] yvals)Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateInterpolator. interpolate(T[] xval, T[] yval)Compute an interpolating function for the dataset.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>LinearInterpolator. interpolate(T[] x, T[] y)Computes a linear interpolating function for the data set.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>SplineInterpolator. interpolate(T[] x, T[] y)Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
TBilinearInterpolatingFunction. value(T x, T y)Compute the value for the function.<T extends CalculusFieldElement<T>>
TPiecewiseBicubicSplineInterpolatingFunction. value(T x, T y)Compute the value for the function.Methods in org.hipparchus.analysis.interpolation with parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>AkimaSplineInterpolator. interpolate(T[] xvals, T[] yvals)Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateInterpolator. interpolate(T[] xval, T[] yval)Compute an interpolating function for the dataset.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>LinearInterpolator. interpolate(T[] x, T[] y)Computes a linear interpolating function for the data set.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>SplineInterpolator. interpolate(T[] x, T[] y)Computes an interpolating function for the data set. -
Uses of CalculusFieldElement in org.hipparchus.analysis.polynomials
Classes in org.hipparchus.analysis.polynomials with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldPolynomialFunction<T extends CalculusFieldElement<T>>Immutable representation of a real polynomial function with real coefficients.classFieldPolynomialSplineFunction<T extends CalculusFieldElement<T>>Represents a polynomial spline function.static classSmoothStepFactory.FieldSmoothStepFunction<T extends CalculusFieldElement<T>>Smoothstep function as defined here.Methods in org.hipparchus.analysis.polynomials with type parameters of type CalculusFieldElement Modifier and Type Method Description protected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction. differentiate(T[] coefficients)Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
TFieldPolynomialFunction. evaluate(T[] coefficients, T argument)Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getClamp(Field<T> field)Get theclamping smoothstep function.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getCubic(Field<T> field)Get thecubic smoothstep function.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getFieldGeneralOrder(Field<T> field, int N)Create asmoothstep functionof order 2N + 1.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getQuadratic(Field<T> field)Get thequadratic smoothstep function.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory. getQuintic(Field<T> field)Get thequintic smoothstep function.<T extends CalculusFieldElement<T>>
TPolynomialFunction. value(T t)Compute the value of the function.<T extends CalculusFieldElement<T>>
TPolynomialFunctionNewtonForm. value(T t)Compute the value of the function.<T extends CalculusFieldElement<T>>
TPolynomialSplineFunction. value(T t)Compute the value of the function.Methods in org.hipparchus.analysis.polynomials that return CalculusFieldElement Modifier and Type Method Description protected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction. differentiate(T[] coefficients)Returns the coefficients of the derivative of the polynomial with the given coefficients.T[]FieldPolynomialFunction. getCoefficients()Returns a copy of the coefficients array.T[]FieldPolynomialSplineFunction. getKnots()Get an array copy of the knot points.Methods in org.hipparchus.analysis.polynomials with parameters of type CalculusFieldElement Modifier and Type Method Description protected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction. differentiate(T[] coefficients)Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
TFieldPolynomialFunction. evaluate(T[] coefficients, T argument)Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.Constructors in org.hipparchus.analysis.polynomials with parameters of type CalculusFieldElement Constructor Description FieldPolynomialFunction(T[] c)Construct a polynomial with the given coefficients.FieldPolynomialSplineFunction(T[] knots, FieldPolynomialFunction<T>[] polynomials)Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of CalculusFieldElement in org.hipparchus.analysis.solvers
Classes in org.hipparchus.analysis.solvers with type parameters of type CalculusFieldElement Modifier and Type Interface Description interfaceBracketedRealFieldUnivariateSolver<T extends CalculusFieldElement<T>>Interface for(univariate real) root-finding algorithmsthat maintain a bracketed solution.static classBracketedRealFieldUnivariateSolver.Interval<T extends CalculusFieldElement<T>>An interval of a function that brackets a root.classFieldBracketingNthOrderBrentSolver<T extends CalculusFieldElement<T>>This class implements a modification of the Brent algorithm.Methods in org.hipparchus.analysis.solvers with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBoundf(a) * f(b) <= 0Iffis continuous on[a,b], this means thataandbbracket a root off.Methods in org.hipparchus.analysis.solvers that return CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBoundf(a) * f(b) <= 0Iffis continuous on[a,b], this means thataandbbracket a root off. -
Uses of CalculusFieldElement in org.hipparchus.complex
Classes in org.hipparchus.complex with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldComplex<T extends CalculusFieldElement<T>>Representation of a Complex number, i.e. a number which has both a real and imaginary part.classFieldComplexField<T extends CalculusFieldElement<T>>Representation of the complex numbers field.classFieldComplexUnivariateIntegrator<T extends CalculusFieldElement<T>>Wrapper to perform univariate complex integration using an underlying real integration algorithms.Classes in org.hipparchus.complex that implement CalculusFieldElement Modifier and Type Class Description classComplexRepresentation of a Complex number, i.e. a number which has both a real and imaginary part.classFieldComplex<T extends CalculusFieldElement<T>>Representation of a Complex number, i.e. a number which has both a real and imaginary part.Methods in org.hipparchus.complex with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equals(FieldComplex<T> x, FieldComplex<T> y)Returnstrueiff the values are equal as defined byequals(x, y, 1).static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equals(FieldComplex<T> x, FieldComplex<T> y, double eps)Returnstrueif, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equals(FieldComplex<T> x, FieldComplex<T> y, int maxUlps)Test for the floating-point equality between Complex objects.static <T extends CalculusFieldElement<T>>
booleanFieldComplex. equalsWithRelativeTolerance(FieldComplex<T> x, FieldComplex<T> y, double eps)Returnstrueif, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.static <T extends CalculusFieldElement<T>>
FieldComplexField<T>FieldComplexField. getField(Field<T> partsField)Get the field for complex numbers.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getI(Field<T> field)Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getInf(Field<T> field)Get a complex number representing "+INF + INFi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getMinusI(Field<T> field)Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getMinusOne(Field<T> field)Get a complex number representing "-1.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getNaN(Field<T> field)Get a complex number representing "NaN + NaNi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getOne(Field<T> field)Get a complex number representing "1.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getPi(Field<T> field)Get a complex number representing "π + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. getZero(Field<T> field)Get a complex number representing "0.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>ComplexUtils. polar2Complex(T r, T theta)Creates a complex number from the given polar representation.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. valueOf(T realPart)Create a complex number given only the real part.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex. valueOf(T realPart, T imaginaryPart)Create a complex number given the real and imaginary parts. -
Uses of CalculusFieldElement in org.hipparchus.dfp
Classes in org.hipparchus.dfp that implement CalculusFieldElement Modifier and Type Class Description classDfpDecimal floating point library for JavaclassDfpDecSubclass ofDfpwhich hides the radix-10000 artifacts of the superclass. -
Uses of CalculusFieldElement in org.hipparchus.geometry.euclidean.threed
Classes in org.hipparchus.geometry.euclidean.threed with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldLine<T extends CalculusFieldElement<T>>The class represent lines in a three dimensional space.classFieldRotation<T extends CalculusFieldElement<T>>This class is a re-implementation ofRotationusingCalculusFieldElement.classFieldVector3D<T extends CalculusFieldElement<T>>This class is a re-implementation ofVector3DusingCalculusFieldElement.Methods in org.hipparchus.geometry.euclidean.threed with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, Vector3D v2)Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. angle(Vector3D v1, FieldVector3D<T> v2)Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
FieldRotation<T>FieldRotation. applyInverseTo(Rotation rOuter, FieldRotation<T> rInner)Apply the inverse of a rotation to another rotation.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldRotation. applyInverseTo(Rotation r, FieldVector3D<T> u)Apply the inverse of a rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldRotation<T>FieldRotation. applyTo(Rotation r1, FieldRotation<T> rInner)Apply a rotation to another rotation.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldRotation. applyTo(Rotation r, FieldVector3D<T> u)Apply a rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, Vector3D v2)Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(Vector3D v1, FieldVector3D<T> v2)Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldRotation. distance(FieldRotation<T> r1, FieldRotation<T> r2)Compute the distance between two rotations.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, Vector3D v2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance(Vector3D v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, Vector3D v2)Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distance1(Vector3D v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, Vector3D v2)Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceInf(Vector3D v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, Vector3D v2)Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. distanceSq(Vector3D v1, FieldVector3D<T> v2)Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, Vector3D v2)Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D. dotProduct(Vector3D v1, FieldVector3D<T> v2)Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldRotation<T>FieldRotation. getIdentity(Field<T> field)Get identity rotation.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusI(Field<T> field)Get opposite of the first canonical vector (coordinates: -1, 0, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusJ(Field<T> field)Get opposite of the second canonical vector (coordinates: 0, -1, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusK(Field<T> field)Get opposite of the third canonical vector (coordinates: 0, 0, -1).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNaN(Field<T> field)Get a vector with all coordinates set to NaN.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNegativeInfinity(Field<T> field)Get a vector with all coordinates set to negative infinity.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusI(Field<T> field)Get first canonical vector (coordinates: 1, 0, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusJ(Field<T> field)Get second canonical vector (coordinates: 0, 1, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusK(Field<T> field)Get third canonical vector (coordinates: 0, 0, 1).static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPositiveInfinity(Field<T> field)Get a vector with all coordinates set to positive infinity.static <T extends CalculusFieldElement<T>>
FieldVector3D<T>FieldVector3D. getZero(Field<T> field)Get null vector (coordinates: 0, 0, 0).Methods in org.hipparchus.geometry.euclidean.threed that return CalculusFieldElement Modifier and Type Method Description T[]FieldRotation. getAngles(RotationOrder order, RotationConvention convention)Get the Cardan or Euler angles corresponding to the instance.T[][]FieldRotation. getMatrix()Get the 3X3 matrix corresponding to the instanceT[]FieldVector3D. toArray()Get the vector coordinates as a dimension 3 array.Methods in org.hipparchus.geometry.euclidean.threed with parameters of type CalculusFieldElement Modifier and Type Method Description voidFieldRotation. applyInverseTo(double[] in, T[] out)Apply the inverse of the rotation to a vector stored in an array.voidFieldRotation. applyInverseTo(T[] in, T[] out)Apply the inverse of the rotation to a vector stored in an array.voidFieldRotation. applyTo(double[] in, T[] out)Apply the rotation to a vector stored in an array.voidFieldRotation. applyTo(T[] in, T[] out)Apply the rotation to a vector stored in an array.Constructors in org.hipparchus.geometry.euclidean.threed with parameters of type CalculusFieldElement Constructor Description FieldRotation(T[][] m, double threshold)Build a rotation from a 3X3 matrix.FieldVector3D(T[] v)Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.geometry.euclidean.twod
Classes in org.hipparchus.geometry.euclidean.twod with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldVector2D<T extends CalculusFieldElement<T>>This class is a re-implementation ofVector2DusingCalculusFieldElement.Methods in org.hipparchus.geometry.euclidean.twod with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TFieldVector2D. angle(FieldVector2D<T> v1, FieldVector2D<T> v2)Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. angle(FieldVector2D<T> v1, Vector2D v2)Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. angle(Vector2D v1, FieldVector2D<T> v2)Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance(FieldVector2D<T> p1, FieldVector2D<T> p2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance(FieldVector2D<T> p1, Vector2D p2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance(Vector2D p1, FieldVector2D<T> p2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance1(FieldVector2D<T> p1, FieldVector2D<T> p2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance1(FieldVector2D<T> p1, Vector2D p2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distance1(Vector2D p1, FieldVector2D<T> p2)Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceInf(FieldVector2D<T> p1, FieldVector2D<T> p2)Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceInf(FieldVector2D<T> p1, Vector2D p2)Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceInf(Vector2D p1, FieldVector2D<T> p2)Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceSq(FieldVector2D<T> p1, FieldVector2D<T> p2)Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceSq(FieldVector2D<T> p1, Vector2D p2)Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D. distanceSq(Vector2D p1, FieldVector2D<T> p2)Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getMinusI(Field<T> field)Get opposite of the first canonical vector (coordinates: -1).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getMinusJ(Field<T> field)Get opposite of the second canonical vector (coordinates: 0, -1).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getNaN(Field<T> field)Get a vector with all coordinates set to NaN.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getNegativeInfinity(Field<T> field)Get a vector with all coordinates set to negative infinity.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getPlusI(Field<T> field)Get first canonical vector (coordinates: 1, 0).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getPlusJ(Field<T> field)Get second canonical vector (coordinates: 0, 1).static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getPositiveInfinity(Field<T> field)Get a vector with all coordinates set to positive infinity.static <T extends CalculusFieldElement<T>>
FieldVector2D<T>FieldVector2D. getZero(Field<T> field)Get null vector (coordinates: 0, 0).static <T extends CalculusFieldElement<T>>
TFieldVector2D. orientation(FieldVector2D<T> p, FieldVector2D<T> q, FieldVector2D<T> r)Compute the orientation of a triplet of points.Methods in org.hipparchus.geometry.euclidean.twod that return CalculusFieldElement Modifier and Type Method Description T[]FieldVector2D. toArray()Get the vector coordinates as a dimension 2 array.Constructors in org.hipparchus.geometry.euclidean.twod with parameters of type CalculusFieldElement Constructor Description FieldVector2D(T[] v)Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.linear
Classes in org.hipparchus.linear with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldQRDecomposer<T extends CalculusFieldElement<T>>Matrix decomposer using QR-decomposition.classFieldQRDecomposition<T extends CalculusFieldElement<T>>Calculates the QR-decomposition of a field matrix.Methods in org.hipparchus.linear with type parameters of type CalculusFieldElement Modifier and Type Method Description abstract <T extends CalculusFieldElement<T>>
intDependentVectorsHandler. manageDependent(Field<T> field, int index, List<FieldVector<T>> basis)Manage a dependent vector.static <T extends CalculusFieldElement<T>>
List<FieldVector<T>>MatrixUtils. orthonormalize(Field<T> field, List<FieldVector<T>> independent, T threshold, DependentVectorsHandler handler)Orthonormalize a list of vectors.Methods in org.hipparchus.linear with parameters of type CalculusFieldElement Modifier and Type Method Description protected voidFieldQRDecomposition. decompose(T[][] matrix)Decompose matrix.protected voidFieldQRDecomposition. performHouseholderReflection(int minor, T[][] matrix)Perform Householder reflection for a minor A(minor, minor) of A. -
Uses of CalculusFieldElement in org.hipparchus.ode
Classes in org.hipparchus.ode with type parameters of type CalculusFieldElement Modifier and Type Class Description classAbstractFieldIntegrator<T extends CalculusFieldElement<T>>Base class managing common boilerplate for all integrators.classFieldDenseOutputModel<T extends CalculusFieldElement<T>>This class stores all information provided by an ODE integrator during the integration process and build a continuous model of the solution from this.classFieldEquationsMapper<T extends CalculusFieldElement<T>>Class mapping the part of a complete state or derivative that pertains to a set of differential equations.classFieldExpandableODE<T extends CalculusFieldElement<T>>This class represents a combined set of first order differential equations, with at least a primary set of equations expandable by some sets of secondary equations.interfaceFieldODEIntegrator<T extends CalculusFieldElement<T>>This interface represents a first order integrator for differential equations.classFieldODEState<T extends CalculusFieldElement<T>>Container for time, main and secondary state vectors.classFieldODEStateAndDerivative<T extends CalculusFieldElement<T>>Container for time, main and secondary state vectors as well as their derivatives.interfaceFieldOrdinaryDifferentialEquation<T extends CalculusFieldElement<T>>This interface represents a first order differential equations set.interfaceFieldSecondaryODE<T extends CalculusFieldElement<T>>This interface allows users to add secondary differential equations to a primary set of differential equations.classMultistepFieldIntegrator<T extends CalculusFieldElement<T>>This class is the base class for multistep integrators for Ordinary Differential Equations.Fields in org.hipparchus.ode declared as CalculusFieldElement Modifier and Type Field Description protected T[]MultistepFieldIntegrator. scaledFirst scaled derivative (h y').Methods in org.hipparchus.ode that return CalculusFieldElement Modifier and Type Method Description T[]AbstractFieldIntegrator. computeDerivatives(T t, T[] y)Compute the derivatives and check the number of evaluations.T[]FieldExpandableODE. computeDerivatives(T t, T[] y)Get the current time derivative of the complete state vector.T[]FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)Get the current time derivative of the state vector.T[]FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)Compute the derivatives related to the secondary state parameters.protected T[][]FieldODEState. copy(T[][] original)Copy a two-dimensions array.T[]FieldEquationsMapper. extractEquationData(int index, T[] complete)Extract equation data from a complete state or derivative array.T[]FieldODEStateAndDerivative. getCompleteDerivative()Get complete derivative at time.T[]FieldODEState. getCompleteState()Get complete state at time.T[]FieldODEStateAndDerivative. getPrimaryDerivative()Get derivative of the primary state at time.T[]FieldODEState. getPrimaryState()Get primary state at time.T[]FieldODEStateAndDerivative. getSecondaryDerivative(int index)Get derivative of the secondary state at time.T[]FieldODEState. getSecondaryState(int index)Get secondary state at time.Methods in org.hipparchus.ode with parameters of type CalculusFieldElement Modifier and Type Method Description T[]AbstractFieldIntegrator. computeDerivatives(T t, T[] y)Compute the derivatives and check the number of evaluations.T[]FieldExpandableODE. computeDerivatives(T t, T[] y)Get the current time derivative of the complete state vector.T[]FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)Get the current time derivative of the state vector.T[]FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)Compute the derivatives related to the secondary state parameters.protected T[][]FieldODEState. copy(T[][] original)Copy a two-dimensions array.T[]FieldEquationsMapper. extractEquationData(int index, T[] complete)Extract equation data from a complete state or derivative array.default voidFieldOrdinaryDifferentialEquation. init(T t0, T[] y0, T finalTime)Initialize equations at the start of an ODE integration.default voidFieldSecondaryODE. init(T t0, T[] primary0, T[] secondary0, T finalTime)Initialize equations at the start of an ODE integration.protected abstract Array2DRowFieldMatrix<T>MultistepFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)Initialize the high order scaled derivatives at step start.voidFieldEquationsMapper. insertEquationData(int index, T[] equationData, T[] complete)Insert equation data into a complete state or derivative array.FieldODEStateAndDerivative<T>FieldEquationsMapper. mapStateAndDerivative(T t, T[] y, T[] yDot)Map flat arrays to a state and derivative.Constructors in org.hipparchus.ode with parameters of type CalculusFieldElement Constructor Description FieldODEState(T time, T[] primaryState)Simple constructor.FieldODEState(T time, T[] primaryState, T[][] secondaryState)Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative)Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative, T[][] secondaryState, T[][] secondaryDerivative)Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.ode.events
Classes in org.hipparchus.ode.events with type parameters of type CalculusFieldElement Modifier and Type Class Description classAbstractFieldODEDetector<T extends AbstractFieldODEDetector<T,E>,E extends CalculusFieldElement<E>>Base class for #@linkFieldODEEventDetector.interfaceFieldAdaptableInterval<T extends CalculusFieldElement<T>>This interface represents an event checking interval that depends on state.classFieldDetectorBasedEventState<T extends CalculusFieldElement<T>>This class handles the state for oneevent handlerduring integration steps.classFieldEventOccurrence<T extends CalculusFieldElement<T>>Class to hold the data related to an event occurrence that is needed to decide how to modify integration.classFieldEventSlopeFilter<T extends FieldODEEventDetector<E>,E extends CalculusFieldElement<E>>Wrapper used to detect only increasing or decreasing events.interfaceFieldEventState<T extends CalculusFieldElement<T>>This interface handles the state for either oneevent handleror onestep end handlerduring integration steps.interfaceFieldODEEventDetector<T extends CalculusFieldElement<T>>This interface represents a handler for discrete events triggered during ODE integration.interfaceFieldODEEventHandler<T extends CalculusFieldElement<T>>This interface represents a handler for discrete events triggered during ODE integration.interfaceFieldODEStepEndHandler<T extends CalculusFieldElement<T>>This interface represents a handler for discrete events triggered during ODE integration at each step end.classFieldStepEndEventState<T extends CalculusFieldElement<T>>This class handles the state for oneevent handlerthat triggers at step end. -
Uses of CalculusFieldElement in org.hipparchus.ode.nonstiff
Classes in org.hipparchus.ode.nonstiff with type parameters of type CalculusFieldElement Modifier and Type Class Description classAdamsBashforthFieldIntegrator<T extends CalculusFieldElement<T>>This class implements explicit Adams-Bashforth integrators for Ordinary Differential Equations.classAdamsFieldIntegrator<T extends CalculusFieldElement<T>>Base class forAdams-BashforthandAdams-Moultonintegrators.classAdamsMoultonFieldIntegrator<T extends CalculusFieldElement<T>>This class implements implicit Adams-Moulton integrators for Ordinary Differential Equations.classAdamsNordsieckFieldTransformer<T extends CalculusFieldElement<T>>Transformer to Nordsieck vectors for Adams integrators.classAdaptiveStepsizeFieldIntegrator<T extends CalculusFieldElement<T>>This abstract class holds the common part of all adaptive stepsize integrators for Ordinary Differential Equations.classClassicalRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the classical fourth order Runge-Kutta integrator for Ordinary Differential Equations (it is the most often used Runge-Kutta method).classDormandPrince54FieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 5(4) Dormand-Prince integrator for Ordinary Differential Equations.classDormandPrince853FieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 8(5,3) Dormand-Prince integrator for Ordinary Differential Equations.classEmbeddedRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.classEulerFieldIntegrator<T extends CalculusFieldElement<T>>This class implements a simple Euler integrator for Ordinary Differential Equations.interfaceFieldButcherArrayProvider<T extends CalculusFieldElement<T>>This interface represents an integrator based on Butcher arrays.classGillFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .classHighamHall54FieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 5(4) Higham and Hall integrator for Ordinary Differential Equations.classLutherFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.classMidpointFieldIntegrator<T extends CalculusFieldElement<T>>This class implements a second order Runge-Kutta integrator for Ordinary Differential Equations.classRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.classThreeEighthesFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 3/8 fourth order Runge-Kutta integrator for Ordinary Differential Equations.Methods in org.hipparchus.ode.nonstiff with type parameters of type CalculusFieldElement Modifier and Type Method Description <T extends CalculusFieldElement<T>>
TStepsizeHelper. filterStep(T h, boolean forward, boolean acceptSmall)Filter the integration step.static <T extends CalculusFieldElement<T>>
AdamsNordsieckFieldTransformer<T>AdamsNordsieckFieldTransformer. getInstance(Field<T> field, int nSteps)Get the Nordsieck transformer for a given field and number of steps.<T extends CalculusFieldElement<T>>
TStepsizeHelper. getTolerance(int i, T scale)Get the tolerance for one component.Methods in org.hipparchus.ode.nonstiff that return CalculusFieldElement Modifier and Type Method Description T[][]ClassicalRungeKuttaFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]DormandPrince54FieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]DormandPrince853FieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]EulerFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]FieldButcherArrayProvider. getA()Get the internal weights from Butcher array (without the first empty row).T[][]GillFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]HighamHall54FieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]LutherFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]MidpointFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]ThreeEighthesFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[]ClassicalRungeKuttaFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]DormandPrince54FieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]DormandPrince853FieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]EulerFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]FieldButcherArrayProvider. getB()Get the external weights for the high order method from Butcher array.T[]GillFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]HighamHall54FieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]LutherFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]MidpointFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]ThreeEighthesFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]ClassicalRungeKuttaFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]DormandPrince54FieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]DormandPrince853FieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]EulerFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]FieldButcherArrayProvider. getC()Get the time steps from Butcher array (without the first zero).T[]GillFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]HighamHall54FieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]LutherFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]MidpointFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]ThreeEighthesFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)Fast computation of a single step of ODE integration.Methods in org.hipparchus.ode.nonstiff with parameters of type CalculusFieldElement Modifier and Type Method Description protected org.hipparchus.ode.nonstiff.ClassicalRungeKuttaFieldStateInterpolator<T>ClassicalRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince54FieldStateInterpolator<T>DormandPrince54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince853FieldStateInterpolator<T>DormandPrince853FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>EmbeddedRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.EulerFieldStateInterpolator<T>EulerFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.GillFieldStateInterpolator<T>GillFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.HighamHall54FieldStateInterpolator<T>HighamHall54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.LutherFieldStateInterpolator<T>LutherFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.MidpointFieldStateInterpolator<T>MidpointFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>RungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.ThreeEighthesFieldStateInterpolator<T>ThreeEighthesFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected doubleAdamsBashforthFieldIntegrator. errorEstimation(T[] previousState, T predictedTime, T[] predictedState, T[] predictedScaled, FieldMatrix<T> predictedNordsieck)Estimate error.protected abstract doubleAdamsFieldIntegrator. errorEstimation(T[] previousState, T predictedTime, T[] predictedState, T[] predictedScaled, FieldMatrix<T> predictedNordsieck)Estimate error.protected doubleAdamsMoultonFieldIntegrator. errorEstimation(T[] previousState, T predictedTime, T[] predictedState, T[] predictedScaled, FieldMatrix<T> predictedNordsieck)Estimate error.protected doubleDormandPrince54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected doubleDormandPrince853FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected abstract doubleEmbeddedRungeKuttaFieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected doubleHighamHall54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected org.hipparchus.ode.nonstiff.AdamsFieldStateInterpolator<T>AdamsBashforthFieldIntegrator. finalizeStep(T stepSize, T[] predictedY, T[] predictedScaled, Array2DRowFieldMatrix<T> predictedNordsieck, boolean isForward, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> equationsMapper)Finalize the step.protected abstract org.hipparchus.ode.nonstiff.AdamsFieldStateInterpolator<T>AdamsFieldIntegrator. finalizeStep(T stepSize, T[] predictedState, T[] predictedScaled, Array2DRowFieldMatrix<T> predictedNordsieck, boolean isForward, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> equationsMapper)Finalize the step.protected org.hipparchus.ode.nonstiff.AdamsFieldStateInterpolator<T>AdamsMoultonFieldIntegrator. finalizeStep(T stepSize, T[] predictedY, T[] predictedScaled, Array2DRowFieldMatrix<T> predictedNordsieck, boolean isForward, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> equationsMapper)Finalize the step.protected Array2DRowFieldMatrix<T>AdamsFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)Initialize the high order scaled derivatives at step start.Array2DRowFieldMatrix<T>AdamsNordsieckFieldTransformer. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)Initialize the high order scaled derivatives at step start.doubleAdaptiveStepsizeFieldIntegrator. initializeStep(boolean forward, int order, T[] scale, FieldODEStateAndDerivative<T> state0, FieldEquationsMapper<T> mapper)Initialize the integration step.T[]RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)Fast computation of a single step of ODE integration.voidAdamsFieldIntegrator. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)Update the high order scaled derivatives Adams integrators (phase 2).voidAdamsNordsieckFieldTransformer. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)Update the high order scaled derivatives Adams integrators (phase 2). -
Uses of CalculusFieldElement in org.hipparchus.ode.sampling
Classes in org.hipparchus.ode.sampling with type parameters of type CalculusFieldElement Modifier and Type Class Description classAbstractFieldODEStateInterpolator<T extends CalculusFieldElement<T>>This abstract class represents an interpolator over the last step during an ODE integration.interfaceFieldODEFixedStepHandler<T extends CalculusFieldElement<T>>This interface represents a handler that should be called after each successful fixed step.interfaceFieldODEStateInterpolator<T extends CalculusFieldElement<T>>This interface represents an interpolator over the last step during an ODE integration.interfaceFieldODEStepHandler<T extends CalculusFieldElement<T>>This interface represents a handler that should be called after each successful step.classFieldStepNormalizer<T extends CalculusFieldElement<T>>This class wraps an object implementingFieldODEFixedStepHandlerinto aFieldODEStepHandler. -
Uses of CalculusFieldElement in org.hipparchus.special
Methods in org.hipparchus.special with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TGamma. digamma(T x)Computes the digamma function of x.static <T extends CalculusFieldElement<T>>
TErf. erf(T x)Returns the error function. \[ \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{t=0}^x e^{-t^2}dt \]static <T extends CalculusFieldElement<T>>
TErf. erf(T x1, T x2)Returns the difference between erf(x1) and erf(x2).static <T extends CalculusFieldElement<T>>
TErf. erfc(T x)Returns the complementary error function. \[ erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2}dt = 1 - erf(x) \]static <T extends CalculusFieldElement<T>>
TErf. erfcInv(T x)Returns the inverse erfc.static <T extends CalculusFieldElement<T>>
TErf. erfInv(T x)Returns the inverse erf.static <T extends CalculusFieldElement<T>>
TGamma. gamma(T x)Returns the value of Γ(x).static <T extends CalculusFieldElement<T>>
TGamma. invGamma1pm1(T x)Returns the value of 1 / Γ(1 + x) - 1 for -0.5 ≤ x ≤ 1.5.static <T extends CalculusFieldElement<T>>
TGamma. lanczos(T x)Returns the Lanczos approximation used to compute the gamma function.static <T extends CalculusFieldElement<T>>
TGamma. logGamma(T x)Returns the value of log Γ(x) for x > 0.static <T extends CalculusFieldElement<T>>
TGamma. logGamma1p(T x)Returns the value of log Γ(1 + x) for -0.5 ≤ x ≤ 1.5.static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaP(T a, T x)Returns the regularized gamma function P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaP(T a, T x, double epsilon, int maxIterations)Returns the regularized gamma function P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaQ(T a, T x)Returns the regularized gamma function Q(a, x) = 1 - P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. regularizedGammaQ(T a, T x, double epsilon, int maxIterations)Returns the regularized gamma function Q(a, x) = 1 - P(a, x).static <T extends CalculusFieldElement<T>>
TGamma. trigamma(T x)Computes the trigamma function of x. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.carlson
Methods in org.hipparchus.special.elliptic.carlson with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rC(FieldComplex<T> x, FieldComplex<T> y)Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rC(T x, T y)Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rD(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z)Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rD(T x, T y, T z)Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rF(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z)Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rF(T x, T y, T z)Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rG(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z)Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rG(T x, T y, T z)Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rJ(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p)Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral. rJ(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p, FieldComplex<T> delta)Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rJ(T x, T y, T z, T p)Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral. rJ(T x, T y, T z, T p, T delta)Compute Carlson elliptic integral RJ. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.jacobi
Classes in org.hipparchus.special.elliptic.jacobi with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldCopolarC<T extends CalculusFieldElement<T>>Copolar trio with pole at point c in Glaisher’s Notation.classFieldCopolarD<T extends CalculusFieldElement<T>>Copolar trio with pole at point d in Glaisher’s Notation.classFieldCopolarN<T extends CalculusFieldElement<T>>Copolar trio with pole at point n in Glaisher’s Notation.classFieldCopolarS<T extends CalculusFieldElement<T>>Copolar trio with pole at point s in Glaisher’s Notation.classFieldJacobiElliptic<T extends CalculusFieldElement<T>>Computation of Jacobi elliptic functions.classFieldJacobiTheta<T extends CalculusFieldElement<T>>Algorithm computing Jacobi theta functions.classFieldTheta<T extends CalculusFieldElement<T>>Values ofJacobi thetafunctions.Methods in org.hipparchus.special.elliptic.jacobi with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<FieldComplex<T>>JacobiEllipticBuilder. build(FieldComplex<T> m)Build an algorithm for computing Jacobi elliptic functions.static <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<T>JacobiEllipticBuilder. build(T m)Build an algorithm for computing Jacobi elliptic functions. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.legendre
Methods in org.hipparchus.special.elliptic.legendre with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigD(FieldComplex<T> m)Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigD(FieldComplex<T> phi, FieldComplex<T> m)Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigD(T m)Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigD(T phi, T m)Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigE(FieldComplex<T> m)Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigE(FieldComplex<T> phi, FieldComplex<T> m)Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigE(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigE(T m)Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigE(T phi, T m)Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigF(FieldComplex<T> phi, FieldComplex<T> m)Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigF(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigF(T phi, T m)Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigK(FieldComplex<T> m)Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigK(T m)Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigKPrime(FieldComplex<T> m)Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigKPrime(T m)Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigPi(FieldComplex<T> n, FieldComplex<T> m)Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigPi(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m)Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral. bigPi(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigPi(T n, T m)Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. bigPi(T n, T phi, T m)Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral. nome(T m)Get the nome q. -
Uses of CalculusFieldElement in org.hipparchus.util
Classes in org.hipparchus.util with type parameters of type CalculusFieldElement Modifier and Type Class Description classFieldTuple<T extends CalculusFieldElement<T>>This class allows to perform the same computation of all components of a Tuple at once.Classes in org.hipparchus.util that implement CalculusFieldElement Modifier and Type Class Description classBinary64This class wraps adoublevalue in an object.classFieldTuple<T extends CalculusFieldElement<T>>This class allows to perform the same computation of all components of a Tuple at once.classTupleThis class allows to perform the same computation of all components of a Tuple at once.Methods in org.hipparchus.util with type parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
TFastMath. abs(T x)Absolute value.static <T extends CalculusFieldElement<T>>
TFastMath. acos(T x)Compute the arc cosine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. acosh(T a)Compute the inverse hyperbolic cosine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. asin(T x)Compute the arc sine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. asinh(T a)Compute the inverse hyperbolic sine of a number.static <T extends CalculusFieldElement<T>>
TFastMath. atan(T x)Arctangent functionstatic <T extends CalculusFieldElement<T>>
TFastMath. atan2(T y, T x)Two arguments arctangent functionstatic <T extends CalculusFieldElement<T>>
TFastMath. atanh(T a)Compute the inverse hyperbolic tangent of a number.static <T extends CalculusFieldElement<T>>
TFastMath. cbrt(T x)Compute the cubic root of a number.static <T extends CalculusFieldElement<T>>
TFastMath. ceil(T x)Get the smallest whole number larger than x.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkEqualLength(T[] a, T[] b)Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkEqualLength(T[] a, T[] b, boolean abort)Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val)Check that the given array is sorted in strictly increasing order.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict)Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict, boolean abort)Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
TFastMath. copySign(T magnitude, double sign)Returns the first argument with the sign of the second argument.static <T extends CalculusFieldElement<T>>
TFastMath. copySign(T magnitude, T sign)Returns the first argument with the sign of the second argument.static <T extends CalculusFieldElement<T>>
TFastMath. cos(T x)Cosine function.static <T extends CalculusFieldElement<T>>
TFastMath. cosh(T x)Compute the hyperbolic cosine of a number.static <S extends CalculusFieldElement<S>>
FieldSinCos<S>FieldSinCos. difference(FieldSinCos<S> scAlpha, FieldSinCos<S> scBeta)Compute sine and cosine of angles difference.static <S extends CalculusFieldElement<S>>
FieldSinhCosh<S>FieldSinhCosh. difference(FieldSinhCosh<S> schAlpha, FieldSinhCosh<S> schBeta)Compute hyperbolic sine and hyperbolic cosine of angles difference.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x)Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, double epsilon)Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, double epsilon, int maxIterations)Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, int maxIterations)Evaluates the continued fraction at the value x.static <T extends CalculusFieldElement<T>>
TFastMath. exp(T x)Exponential function.static <T extends CalculusFieldElement<T>>
TFastMath. expm1(T x)Compute exp(x) - 1static <T extends CalculusFieldElement<T>>
TFastMath. floor(T x)Get the largest whole number smaller than x.abstract <T extends CalculusFieldElement<T>>
TFieldContinuedFraction. getA(int n, T x)Access the n-th a coefficient of the continued fraction.abstract <T extends CalculusFieldElement<T>>
TFieldContinuedFraction. getB(int n, T x)Access the n-th b coefficient of the continued fraction.static <T extends CalculusFieldElement<T>>
TFastMath. hypot(T x, T y)Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
TFastMath. IEEEremainder(T dividend, double divisor)Computes the remainder as prescribed by the IEEE 754 standard.static <T extends CalculusFieldElement<T>>
TFastMath. IEEEremainder(T dividend, T divisor)Computes the remainder as prescribed by the IEEE 754 standard.static <T extends CalculusFieldElement<T>>
TFastMath. log(T x)Natural logarithm.static <T extends CalculusFieldElement<T>>
TFastMath. log10(T x)Compute the base 10 logarithm.static <T extends CalculusFieldElement<T>>
TFastMath. log1p(T x)Computes log(1 + x).static <T extends CalculusFieldElement<T>>
TFastMath. max(T a, double b)Compute the maximum of two valuesstatic <T extends CalculusFieldElement<T>>
TFastMath. max(T a, T b)Compute the maximum of two valuesstatic <T extends CalculusFieldElement<T>>
TMathUtils. max(T e1, T e2)Find the maximum of two field elements.static <T extends CalculusFieldElement<T>>
TFastMath. min(T a, double b)Compute the minimum of two valuesstatic <T extends CalculusFieldElement<T>>
TFastMath. min(T a, T b)Compute the minimum of two valuesstatic <T extends CalculusFieldElement<T>>
TMathUtils. min(T e1, T e2)Find the minimum of two field elements.static <T extends CalculusFieldElement<T>>
doubleFastMath. norm(T x)Norm.static <T extends CalculusFieldElement<T>>
TMathUtils. normalizeAngle(T a, T center)Normalize an angle in a 2π wide interval around a center value.static <T extends CalculusFieldElement<T>>
TFastMath. pow(T x, double y)Power function.static <T extends CalculusFieldElement<T>>
TFastMath. pow(T d, int e)Raise a double to an int power.static <T extends CalculusFieldElement<T>>
TFastMath. pow(T x, T y)Power function.static <T extends CalculusFieldElement<T>>
TFastMath. rint(T x)Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.static <T extends CalculusFieldElement<T>>
longFastMath. round(T x)Get the closest long to x.static <T extends CalculusFieldElement<T>>
TFastMath. scalb(T d, int n)Multiply a double number by a power of 2.static <T extends CalculusFieldElement<T>>
TFastMath. sign(T a)Compute the sign of a number.static <T extends CalculusFieldElement<T>>
TFastMath. sin(T x)Sine function.static <T extends CalculusFieldElement<T>>
FieldSinCos<T>FastMath. sinCos(T x)Combined Sine and Cosine function.static <T extends CalculusFieldElement<T>>
TFastMath. sinh(T x)Compute the hyperbolic sine of a number.static <T extends CalculusFieldElement<T>>
FieldSinhCosh<T>FastMath. sinhCosh(T x)Combined hyperbolic sine and hyperbolic cosine function.static <T extends CalculusFieldElement<T>>
TFastMath. sqrt(T a)Compute the square root of a number.static <S extends CalculusFieldElement<S>>
FieldSinCos<S>FieldSinCos. sum(FieldSinCos<S> scAlpha, FieldSinCos<S> scBeta)Compute sine and cosine of angles sum.static <S extends CalculusFieldElement<S>>
FieldSinhCosh<S>FieldSinhCosh. sum(FieldSinhCosh<S> schAlpha, FieldSinhCosh<S> schBeta)Compute hyperbolic sine and hyperbolic cosine of angles sum.static <T extends CalculusFieldElement<T>>
TFastMath. tan(T x)Tangent function.static <T extends CalculusFieldElement<T>>
TFastMath. tanh(T x)Compute the hyperbolic tangent of a number.static <T extends CalculusFieldElement<T>>
TFastMath. toDegrees(T x)Convert radians to degrees, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
TFastMath. toRadians(T x)Convert degrees to radians, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
TFastMath. ulp(T x)Compute least significant bit (Unit in Last Position) for a number.Methods in org.hipparchus.util that return CalculusFieldElement Modifier and Type Method Description T[]FieldTuple. getComponents()Get all components of the tuple.Methods in org.hipparchus.util with parameters of type CalculusFieldElement Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
voidMathArrays. checkEqualLength(T[] a, T[] b)Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkEqualLength(T[] a, T[] b, boolean abort)Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val)Check that the given array is sorted in strictly increasing order.static <T extends CalculusFieldElement<T>>
voidMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict)Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
booleanMathArrays. checkOrder(T[] val, MathArrays.OrderDirection dir, boolean strict, boolean abort)Check that the given array is sorted.Constructors in org.hipparchus.util with parameters of type CalculusFieldElement Constructor Description FieldTuple(T... x)Creates a new instance from its components.
-