Class Complex
- java.lang.Object
-
- org.hipparchus.complex.Complex
-
- All Implemented Interfaces:
Serializable
,Comparable<Complex>
,CalculusFieldElement<Complex>
,FieldElement<Complex>
public class Complex extends Object implements CalculusFieldElement<Complex>, Comparable<Complex>, Serializable
Representation of a Complex number, i.e. a number which has both a real and imaginary part.Implementations of arithmetic operations handle
NaN
and infinite values according to the rules forDouble
, i.e.equals(java.lang.Object)
is an equivalence relation for all instances that have aNaN
in either real or imaginary part, e.g. the following are considered equal:1 + NaNi
NaN + i
NaN + NaNi
Note that this contradicts the IEEE-754 standard for floating point numbers (according to which the test
x == x
must fail ifx
isNaN
). The methodequals for primitive double
inPrecision
conforms with IEEE-754 while this class conforms with the standard behavior for Java object types.- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static Complex
I
The square root of -1.static Complex
INF
A complex number representing "+INF + INFi"static Complex
MINUS_I
The square root of -1.static Complex
MINUS_ONE
A complex number representing "-1.0 + 0.0i".static Complex
NaN
A complex number representing "NaN + NaNi".static Complex
ONE
A complex number representing "1.0 + 0.0i".static Complex
PI
A complex number representing "π + 0.0i".static Complex
ZERO
A complex number representing "0.0 + 0.0i".
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description Complex
abs()
Return the absolute value of this complex number.Complex
acos()
Compute the inverse cosine of this complex number.Complex
acosh()
Inverse hyperbolic cosine operation.Complex
add(double addend)
Returns aComplex
whose value is(this + addend)
, withaddend
interpreted as a real number.Complex
add(Complex addend)
Returns aComplex
whose value is(this + addend)
.Complex
asin()
Compute the inverse sine of this complex number.Complex
asinh()
Inverse hyperbolic sine operation.Complex
atan()
Compute the inverse tangent of this complex number.Complex
atan2(Complex x)
Two arguments arc tangent operation.Complex
atanh()
Inverse hyperbolic tangent operation.Complex
cbrt()
Cubic root.Complex
ceil()
Get the smallest whole number larger than instance.int
compareTo(Complex o)
Complex
conjugate()
Returns the conjugate of this complex number.Complex
copySign(double r)
Returns the instance with the sign of the argument.Complex
copySign(Complex z)
Returns the instance with the sign of the argument.Complex
cos()
Compute the cosine of this complex number.Complex
cosh()
Compute the hyperbolic cosine of this complex number.protected Complex
createComplex(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.Complex
divide(double divisor)
Returns aComplex
whose value is(this / divisor)
, withdivisor
interpreted as a real number.Complex
divide(Complex divisor)
Returns aComplex
whose value is(this / divisor)
.boolean
equals(Object other)
Test for equality with another object.static boolean
equals(Complex x, Complex y)
Returnstrue
iff the values are equal as defined byequals(x, y, 1)
.static boolean
equals(Complex x, Complex y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static boolean
equals(Complex x, Complex y, int maxUlps)
Test for the floating-point equality between Complex objects.static boolean
equalsWithRelativeTolerance(Complex x, Complex y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.Complex
exp()
Compute the exponential function of this complex number.Complex
expm1()
Exponential minus 1.Complex
floor()
Get the largest whole number smaller than instance.double
getArgument()
Compute the argument of this complex number.ComplexField
getField()
Get theField
to which the instance belongs.double
getImaginary()
Access the imaginary part.double
getImaginaryPart()
Access the imaginary part.Complex
getPi()
Get the Archimedes constant π.double
getReal()
Access the real part.double
getRealPart()
Access the real part.int
hashCode()
Get a hashCode for the complex number.Complex
hypot(Complex y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.boolean
isInfinite()
Checks whether either the real or imaginary part of this complex number takes an infinite value (eitherDouble.POSITIVE_INFINITY
orDouble.NEGATIVE_INFINITY
) and neither part isNaN
.boolean
isMathematicalInteger()
Check whether the instance is an integer (i.e. imaginary part is zero and real part has no fractional part).boolean
isNaN()
Checks whether either or both parts of this complex number isNaN
.boolean
isReal()
Check whether the instance is real (i.e. imaginary part is zero).boolean
isZero()
Check if an element is semantically equal to zero.Complex
linearCombination(double[] a, Complex[] b)
Compute a linear combination.Complex
linearCombination(double a1, Complex b1, double a2, Complex b2)
Compute a linear combination.Complex
linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3)
Compute a linear combination.Complex
linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4)
Compute a linear combination.Complex
linearCombination(Complex[] a, Complex[] b)
Compute a linear combination.Complex
linearCombination(Complex a1, Complex b1, Complex a2, Complex b2)
Compute a linear combination.Complex
linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3)
Compute a linear combination.Complex
linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4)
Compute a linear combination.Complex
log()
Compute the natural logarithm of this complex number.Complex
log10()
Base 10 logarithm.Complex
log1p()
Shifted natural logarithm.Complex
multiply(double factor)
Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a real number.Complex
multiply(int factor)
Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a integer number.Complex
multiply(Complex factor)
Returns aComplex
whose value isthis * factor
.Complex
multiplyMinusI()
Compute this *- -i.Complex
multiplyPlusI()
Compute this * i.Complex
negate()
Returns aComplex
whose value is(-this)
.Complex
newInstance(double realPart)
Create an instance corresponding to a constant real value.double
norm()
norm.List<Complex>
nthRoot(int n)
Computes the n-th roots of this complex number.Complex
pow(double x)
Returns of value of this complex number raised to the power ofx
.Complex
pow(int n)
Integer power operation.Complex
pow(Complex x)
Returns of value of this complex number raised to the power ofx
.protected Object
readResolve()
Resolve the transient fields in a deserialized Complex Object.Complex
reciprocal()
Returns the multiplicative inverse ofthis
element.Complex
remainder(double a)
IEEE remainder operator.Complex
remainder(Complex a)
IEEE remainder operator.Complex
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.Complex
rootN(int n)
Nth root.Complex
scalb(int n)
Multiply the instance by a power of 2.Complex
sign()
Compute the sign of the instance.Complex
sin()
Compute the sine of this complex number.FieldSinCos<Complex>
sinCos()
Combined Sine and Cosine operation.Complex
sinh()
Compute the hyperbolic sine of this complex number.FieldSinhCosh<Complex>
sinhCosh()
Combined hyperbolic sine and sosine operation.Complex
sqrt()
Compute the square root of this complex number.Complex
sqrt1z()
Compute the square root of1 - this2
for this complex number.Complex
subtract(double subtrahend)
Returns aComplex
whose value is(this - subtrahend)
.Complex
subtract(Complex subtrahend)
Returns aComplex
whose value is(this - subtrahend)
.Complex
tan()
Compute the tangent of this complex number.Complex
tanh()
Compute the hyperbolic tangent of this complex number.Complex
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPComplex
toRadians()
Convert degrees to radians, with error of less than 0.5 ULPString
toString()
Complex
ulp()
Compute least significant bit (Unit in Last Position) for a number.static Complex
valueOf(double realPart)
Create a complex number given only the real part.static Complex
valueOf(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, round
-
-
-
-
Field Detail
-
I
public static final Complex I
The square root of -1. A number representing "0.0 + 1.0i".
-
MINUS_I
public static final Complex MINUS_I
The square root of -1. A number representing "0.0 - 1.0i".- Since:
- 1.7
-
NaN
public static final Complex NaN
A complex number representing "NaN + NaNi".
-
INF
public static final Complex INF
A complex number representing "+INF + INFi"
-
ONE
public static final Complex ONE
A complex number representing "1.0 + 0.0i".
-
MINUS_ONE
public static final Complex MINUS_ONE
A complex number representing "-1.0 + 0.0i".- Since:
- 1.7
-
ZERO
public static final Complex ZERO
A complex number representing "0.0 + 0.0i".
-
PI
public static final Complex PI
A complex number representing "π + 0.0i".
-
-
Constructor Detail
-
Complex
public Complex(double real)
Create a complex number given only the real part.- Parameters:
real
- Real part.
-
Complex
public Complex(double real, double imaginary)
Create a complex number given the real and imaginary parts.- Parameters:
real
- Real part.imaginary
- Imaginary part.
-
-
Method Detail
-
abs
public Complex abs()
Return the absolute value of this complex number. ReturnsNaN
if either real or imaginary part isNaN
andDouble.POSITIVE_INFINITY
if neither part isNaN
, but at least one part is infinite.- Specified by:
abs
in interfaceCalculusFieldElement<Complex>
- Returns:
- the norm.
- Since:
- 2.0
-
norm
public double norm()
norm.- Specified by:
norm
in interfaceCalculusFieldElement<Complex>
- Returns:
- norm(this)
-
add
public Complex add(Complex addend) throws NullArgumentException
Returns aComplex
whose value is(this + addend)
. Uses the definitional formula(a + bi) + (c + di) = (a+c) + (b+d)i
this
oraddend
has aNaN
value in either part,NaN
is returned; otherwiseInfinite
andNaN
values are returned in the parts of the result according to the rules forDouble
arithmetic.- Specified by:
add
in interfaceFieldElement<Complex>
- Parameters:
addend
- Value to be added to thisComplex
.- Returns:
this + addend
.- Throws:
NullArgumentException
- ifaddend
isnull
.
-
add
public Complex add(double addend)
Returns aComplex
whose value is(this + addend)
, withaddend
interpreted as a real number.- Specified by:
add
in interfaceCalculusFieldElement<Complex>
- Parameters:
addend
- Value to be added to thisComplex
.- Returns:
this + addend
.- See Also:
add(Complex)
-
conjugate
public Complex conjugate()
Returns the conjugate of this complex number. The conjugate ofa + bi
isa - bi
.NaN
is returned if either the real or imaginary part of this Complex number equalsDouble.NaN
.If the imaginary part is infinite, and the real part is not
NaN
, the returned value has infinite imaginary part of the opposite sign, e.g. the conjugate of1 + POSITIVE_INFINITY i
is1 - NEGATIVE_INFINITY i
.- Returns:
- the conjugate of this Complex object.
-
divide
public Complex divide(Complex divisor) throws NullArgumentException
Returns aComplex
whose value is(this / divisor)
. Implements the definitional formulaa + bi ac + bd + (bc - ad)i ----------- = ------------------------- c + di c2 + d2
Infinite
andNaN
values are handled according to the following rules, applied in the order presented:- If either
this
ordivisor
has aNaN
value in either part,NaN
is returned. - If
divisor
equalsZERO
,NaN
is returned. - If
this
anddivisor
are both infinite,NaN
is returned. - If
this
is finite (i.e., has noInfinite
orNaN
parts) anddivisor
is infinite (one or both parts infinite),ZERO
is returned. - If
this
is infinite anddivisor
is finite,NaN
values are returned in the parts of the result if theDouble
rules applied to the definitional formula forceNaN
results.
- Specified by:
divide
in interfaceFieldElement<Complex>
- Parameters:
divisor
- Value by which thisComplex
is to be divided.- Returns:
this / divisor
.- Throws:
NullArgumentException
- ifdivisor
isnull
.
- If either
-
divide
public Complex divide(double divisor)
Returns aComplex
whose value is(this / divisor)
, withdivisor
interpreted as a real number.- Specified by:
divide
in interfaceCalculusFieldElement<Complex>
- Parameters:
divisor
- Value by which thisComplex
is to be divided.- Returns:
this / divisor
.- See Also:
divide(Complex)
-
reciprocal
public Complex reciprocal()
Returns the multiplicative inverse ofthis
element.- Specified by:
reciprocal
in interfaceCalculusFieldElement<Complex>
- Specified by:
reciprocal
in interfaceFieldElement<Complex>
- Returns:
- the inverse of
this
.
-
equals
public boolean equals(Object other)
Test for equality with another object. If both the real and imaginary parts of two complex numbers are exactly the same, and neither isDouble.NaN
, the two Complex objects are considered to be equal. The behavior is the same as for JDK'sDouble
:- All
NaN
values are considered to be equal, i.e, if either (or both) real and imaginary parts of the complex number are equal toDouble.NaN
, the complex number is equal toNaN
. - Instances constructed with different representations of zero (i.e. either "0" or "-0") are not considered to be equal.
- All
-
equals
public static boolean equals(Complex x, Complex y, int maxUlps)
Test for the floating-point equality between Complex objects. It returnstrue
if both arguments are equal or within the range of allowed error (inclusive).- Parameters:
x
- First value (cannot benull
).y
- Second value (cannot benull
).maxUlps
-(maxUlps - 1)
is the number of floating point values between the real (resp. imaginary) parts ofx
andy
.- Returns:
true
if there are fewer thanmaxUlps
floating point values between the real (resp. imaginary) parts ofx
andy
.- See Also:
Precision.equals(double,double,int)
-
equals
public static boolean equals(Complex x, Complex y)
Returnstrue
iff the values are equal as defined byequals(x, y, 1)
.- Parameters:
x
- First value (cannot benull
).y
- Second value (cannot benull
).- Returns:
true
if the values are equal.
-
equals
public static boolean equals(Complex x, Complex y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the difference between them is within the range of allowed error (inclusive). Returnsfalse
if either of the arguments is NaN.- Parameters:
x
- First value (cannot benull
).y
- Second value (cannot benull
).eps
- Amount of allowed absolute error.- Returns:
true
if the values are two adjacent floating point numbers or they are within range of each other.- See Also:
Precision.equals(double,double,double)
-
equalsWithRelativeTolerance
public static boolean equalsWithRelativeTolerance(Complex x, Complex y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance. Returnsfalse
if either of the arguments is NaN.- Parameters:
x
- First value (cannot benull
).y
- Second value (cannot benull
).eps
- Amount of allowed relative error.- Returns:
true
if the values are two adjacent floating point numbers or they are within range of each other.- See Also:
Precision.equalsWithRelativeTolerance(double,double,double)
-
hashCode
public int hashCode()
Get a hashCode for the complex number. AnyDouble.NaN
value in real or imaginary part produces the same hash code7
.
-
isZero
public boolean isZero()
Check if an element is semantically equal to zero.The default implementation simply calls
equals(getField().getZero())
. However, this may need to be overridden in some cases as due to compatibility withhashCode()
some classes implementsequals(Object)
in such a way that -0.0 and +0.0 are different, which may be a problem. It prevents for example identifying a diagonal element is zero and should be avoided when doing partial pivoting in LU decomposition.This implementation considers +0.0 and -0.0 to be equal for both real and imaginary components.
- Specified by:
isZero
in interfaceFieldElement<Complex>
- Returns:
- true if the element is semantically equal to zero
- Since:
- 1.8
-
getImaginary
public double getImaginary()
Access the imaginary part.- Returns:
- the imaginary part.
-
getImaginaryPart
public double getImaginaryPart()
Access the imaginary part.- Returns:
- the imaginary part.
- Since:
- 2.0
-
getReal
public double getReal()
Access the real part.- Specified by:
getReal
in interfaceFieldElement<Complex>
- Returns:
- the real part.
-
getRealPart
public double getRealPart()
Access the real part.- Returns:
- the real part.
- Since:
- 2.0
-
isNaN
public boolean isNaN()
Checks whether either or both parts of this complex number isNaN
.- Specified by:
isNaN
in interfaceCalculusFieldElement<Complex>
- Returns:
- true if either or both parts of this complex number is
NaN
; false otherwise.
-
isReal
public boolean isReal()
Check whether the instance is real (i.e. imaginary part is zero).- Returns:
- true if imaginary part is zero
- Since:
- 1.7
-
isMathematicalInteger
public boolean isMathematicalInteger()
Check whether the instance is an integer (i.e. imaginary part is zero and real part has no fractional part).- Returns:
- true if imaginary part is zero and real part has no fractional part
- Since:
- 1.7
-
isInfinite
public boolean isInfinite()
Checks whether either the real or imaginary part of this complex number takes an infinite value (eitherDouble.POSITIVE_INFINITY
orDouble.NEGATIVE_INFINITY
) and neither part isNaN
.- Specified by:
isInfinite
in interfaceCalculusFieldElement<Complex>
- Returns:
- true if one or both parts of this complex number are infinite
and neither part is
NaN
.
-
multiply
public Complex multiply(Complex factor) throws NullArgumentException
Returns aComplex
whose value isthis * factor
. Implements preliminary checks forNaN
and infinity followed by the definitional formula:(a + bi)(c + di) = (ac - bd) + (ad + bc)i
NaN
if eitherthis
orfactor
has one or moreNaN
parts.Returns
INF
if neitherthis
norfactor
has one or moreNaN
parts and if eitherthis
orfactor
has one or more infinite parts (same result is returned regardless of the sign of the components).Returns finite values in components of the result per the definitional formula in all remaining cases.
- Specified by:
multiply
in interfaceFieldElement<Complex>
- Parameters:
factor
- value to be multiplied by thisComplex
.- Returns:
this * factor
.- Throws:
NullArgumentException
- iffactor
isnull
.
-
multiply
public Complex multiply(int factor)
Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a integer number.- Specified by:
multiply
in interfaceFieldElement<Complex>
- Parameters:
factor
- value to be multiplied by thisComplex
.- Returns:
this * factor
.- See Also:
multiply(Complex)
-
multiply
public Complex multiply(double factor)
Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a real number.- Specified by:
multiply
in interfaceCalculusFieldElement<Complex>
- Parameters:
factor
- value to be multiplied by thisComplex
.- Returns:
this * factor
.- See Also:
multiply(Complex)
-
multiplyPlusI
public Complex multiplyPlusI()
Compute this * i.- Returns:
- this * i
- Since:
- 2.0
-
multiplyMinusI
public Complex multiplyMinusI()
Compute this *- -i.- Returns:
- this * i
- Since:
- 2.0
-
negate
public Complex negate()
Returns aComplex
whose value is(-this)
. ReturnsNaN
if either real or imaginary part of this Complex number isDouble.NaN
.- Specified by:
negate
in interfaceFieldElement<Complex>
- Returns:
-this
.
-
subtract
public Complex subtract(Complex subtrahend) throws NullArgumentException
Returns aComplex
whose value is(this - subtrahend)
. Uses the definitional formula(a + bi) - (c + di) = (a-c) + (b-d)i
this
orsubtrahend
has aNaN]
value in either part,NaN
is returned; otherwise infinite andNaN
values are returned in the parts of the result according to the rules forDouble
arithmetic.- Specified by:
subtract
in interfaceFieldElement<Complex>
- Parameters:
subtrahend
- value to be subtracted from thisComplex
.- Returns:
this - subtrahend
.- Throws:
NullArgumentException
- ifsubtrahend
isnull
.
-
subtract
public Complex subtract(double subtrahend)
Returns aComplex
whose value is(this - subtrahend)
.- Specified by:
subtract
in interfaceCalculusFieldElement<Complex>
- Parameters:
subtrahend
- value to be subtracted from thisComplex
.- Returns:
this - subtrahend
.- See Also:
subtract(Complex)
-
acos
public Complex acos()
Compute the inverse cosine of this complex number. Implements the formula:acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))
NaN
if either real or imaginary part of the input argument isNaN
or infinite.- Specified by:
acos
in interfaceCalculusFieldElement<Complex>
- Returns:
- the inverse cosine of this complex number.
-
asin
public Complex asin()
Compute the inverse sine of this complex number. Implements the formula:asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))
Returns
NaN
if either real or imaginary part of the input argument isNaN
or infinite.- Specified by:
asin
in interfaceCalculusFieldElement<Complex>
- Returns:
- the inverse sine of this complex number.
-
atan
public Complex atan()
Compute the inverse tangent of this complex number. Implements the formula:atan(z) = (i/2) log((1 - iz)/(1 + iz))
Returns
NaN
if either real or imaginary part of the input argument isNaN
or infinite.- Specified by:
atan
in interfaceCalculusFieldElement<Complex>
- Returns:
- the inverse tangent of this complex number
-
cos
public Complex cos()
Compute the cosine of this complex number. Implements the formula:cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i
where the (real) functions on the right-hand side are
FastMath.sin(double)
,FastMath.cos(double)
,FastMath.cosh(double)
andFastMath.sinh(double)
.Returns
NaN
if either real or imaginary part of the input argument isNaN
.Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
cos(1 ± INFINITY i) = 1 ∓ INFINITY i cos(±INFINITY + i) = NaN + NaN i cos(±INFINITY ± INFINITY i) = NaN + NaN i
- Specified by:
cos
in interfaceCalculusFieldElement<Complex>
- Returns:
- the cosine of this complex number.
-
cosh
public Complex cosh()
Compute the hyperbolic cosine of this complex number. Implements the formula:cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
FastMath.sin(double)
,FastMath.cos(double)
,FastMath.cosh(double)
andFastMath.sinh(double)
.Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaN
if either real or imaginary part of the input argument isNaN
.Examples:
cosh(1 ± INFINITY i) = NaN + NaN i cosh(±INFINITY + i) = INFINITY ± INFINITY i cosh(±INFINITY ± INFINITY i) = NaN + NaN i
- Specified by:
cosh
in interfaceCalculusFieldElement<Complex>
- Returns:
- the hyperbolic cosine of this complex number.
-
exp
public Complex exp()
Compute the exponential function of this complex number. Implements the formula:exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
FastMath.exp(double)
,FastMath.cos(double)
, andFastMath.sin(double)
.Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaN
if either real or imaginary part of the input argument isNaN
.Examples:
exp(1 ± INFINITY i) = NaN + NaN i exp(INFINITY + i) = INFINITY + INFINITY i exp(-INFINITY + i) = 0 + 0i exp(±INFINITY ± INFINITY i) = NaN + NaN i
- Specified by:
exp
in interfaceCalculusFieldElement<Complex>
- Returns:
ethis
.
-
expm1
public Complex expm1()
Exponential minus 1.- Specified by:
expm1
in interfaceCalculusFieldElement<Complex>
- Returns:
- exponential minus one of the instance
- Since:
- 1.7
-
log
public Complex log()
Compute the natural logarithm of this complex number. Implements the formula:log(a + bi) = ln(|a + bi|) + arg(a + bi)i
FastMath.log(double)
,|a + bi|
is the modulus,abs()
, andarg(a + bi) =
FastMath.atan2(double, double)
(b, a).Returns
Infinite (or critical) values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaN
if either real or imaginary part of the input argument isNaN
.Examples:
log(1 ± INFINITY i) = INFINITY ± (π/2)i log(INFINITY + i) = INFINITY + 0i log(-INFINITY + i) = INFINITY + πi log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i log(0 + 0i) = -INFINITY + 0i
- Specified by:
log
in interfaceCalculusFieldElement<Complex>
- Returns:
- the value
ln this
, the natural logarithm ofthis
.
-
log1p
public Complex log1p()
Shifted natural logarithm.- Specified by:
log1p
in interfaceCalculusFieldElement<Complex>
- Returns:
- logarithm of one plus the instance
- Since:
- 1.7
-
log10
public Complex log10()
Base 10 logarithm.- Specified by:
log10
in interfaceCalculusFieldElement<Complex>
- Returns:
- base 10 logarithm of the instance
- Since:
- 1.7
-
pow
public Complex pow(Complex x) throws NullArgumentException
Returns of value of this complex number raised to the power ofx
.If
x
is a real number whose real part has an integer value, returnspow(int)
, if boththis
andx
are real andFastMath.pow(double, double)
with the corresponding real arguments would return a finite number (neither NaN nor infinite), then returns the same value converted toComplex
, with the same special cases. In all other cases real cases, implements yx = exp(x·log(y)).- Specified by:
pow
in interfaceCalculusFieldElement<Complex>
- Parameters:
x
- exponent to which thisComplex
is to be raised.- Returns:
thisx
.- Throws:
NullArgumentException
- if x isnull
.
-
pow
public Complex pow(double x)
Returns of value of this complex number raised to the power ofx
.If
x
has an integer value, returnspow(int)
, ifthis
is real andFastMath.pow(double, double)
with the corresponding real arguments would return a finite number (neither NaN nor infinite), then returns the same value converted toComplex
, with the same special cases. In all other cases real cases, implements yx = exp(x·log(y)).- Specified by:
pow
in interfaceCalculusFieldElement<Complex>
- Parameters:
x
- exponent to which thisComplex
is to be raised.- Returns:
thisx
.
-
pow
public Complex pow(int n)
Integer power operation.- Specified by:
pow
in interfaceCalculusFieldElement<Complex>
- Parameters:
n
- power to apply- Returns:
- thisn
- Since:
- 1.7
-
sin
public Complex sin()
Compute the sine of this complex number. Implements the formula:sin(a + bi) = sin(a)cosh(b) + cos(a)sinh(b)i
FastMath.sin(double)
,FastMath.cos(double)
,FastMath.cosh(double)
andFastMath.sinh(double)
.Returns
NaN
if either real or imaginary part of the input argument isNaN
.Infinite values in real or imaginary parts of the input may result in infinite or
NaN
values returned in parts of the result.Examples:
sin(1 ± INFINITY i) = 1 ± INFINITY i sin(±INFINITY + i) = NaN + NaN i sin(±INFINITY ± INFINITY i) = NaN + NaN i
- Specified by:
sin
in interfaceCalculusFieldElement<Complex>
- Returns:
- the sine of this complex number.
-
sinCos
public FieldSinCos<Complex> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCos
in interfaceCalculusFieldElement<Complex>
- Returns:
- [sin(this), cos(this)]
-
atan2
public Complex atan2(Complex x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2
, this method computesatan2(this, x)
, i.e. the instance represents they
argument and thex
argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2
two-arguments arc tangent and putsx
as its first argument.- Specified by:
atan2
in interfaceCalculusFieldElement<Complex>
- Parameters:
x
- second argument of the arc tangent- Returns:
- atan2(this, x)
- Since:
- 1.7
-
acosh
public Complex acosh()
Inverse hyperbolic cosine operation.Branch cuts are on the real axis, below +1.
- Specified by:
acosh
in interfaceCalculusFieldElement<Complex>
- Returns:
- acosh(this)
- Since:
- 1.7
-
asinh
public Complex asinh()
Inverse hyperbolic sine operation.Branch cuts are on the imaginary axis, above +i and below -i.
- Specified by:
asinh
in interfaceCalculusFieldElement<Complex>
- Returns:
- asin(this)
- Since:
- 1.7
-
atanh
public Complex atanh()
Inverse hyperbolic tangent operation.Branch cuts are on the real axis, above +1 and below -1.
- Specified by:
atanh
in interfaceCalculusFieldElement<Complex>
- Returns:
- atanh(this)
- Since:
- 1.7
-
sinh
public Complex sinh()
Compute the hyperbolic sine of this complex number. Implements the formula:sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
FastMath.sin(double)
,FastMath.cos(double)
,FastMath.cosh(double)
andFastMath.sinh(double)
.Returns
NaN
if either real or imaginary part of the input argument isNaN
.Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
sinh(1 ± INFINITY i) = NaN + NaN i sinh(±INFINITY + i) = ± INFINITY + INFINITY i sinh(±INFINITY ± INFINITY i) = NaN + NaN i
- Specified by:
sinh
in interfaceCalculusFieldElement<Complex>
- Returns:
- the hyperbolic sine of
this
.
-
sinhCosh
public FieldSinhCosh<Complex> sinhCosh()
Combined hyperbolic sine and sosine operation.- Specified by:
sinhCosh
in interfaceCalculusFieldElement<Complex>
- Returns:
- [sinh(this), cosh(this)]
-
sqrt
public Complex sqrt()
Compute the square root of this complex number. Implements the following algorithm to computesqrt(a + bi)
:- Let
t = sqrt((|a| + |a + bi|) / 2)
if
a ≥ 0
returnt + (b/2t)i
else return|b|/2t + sign(b)t i
|a| =
abs(a)
|a + bi| =
hypot(a, b)
sign(b) =
copySign(1, b)
Returns
NaN
if either real or imaginary part of the input argument isNaN
.Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
sqrt(1 ± ∞ i) = ∞ + NaN i sqrt(∞ + i) = ∞ + 0i sqrt(-∞ + i) = 0 + ∞ i sqrt(∞ ± ∞ i) = ∞ + NaN i sqrt(-∞ ± ∞ i) = NaN ± ∞ i
- Specified by:
sqrt
in interfaceCalculusFieldElement<Complex>
- Returns:
- the square root of
this
with nonnegative real part.
- Let
-
sqrt1z
public Complex sqrt1z()
Compute the square root of1 - this2
for this complex number. Computes the result directly assqrt(ONE.subtract(z.multiply(z)))
.Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaN
if either real or imaginary part of the input argument isNaN
.- Returns:
- the square root of
1 - this2
.
-
cbrt
public Complex cbrt()
Cubic root.This implementation compute the principal cube root by using a branch cut along real negative axis.
- Specified by:
cbrt
in interfaceCalculusFieldElement<Complex>
- Returns:
- cubic root of the instance
- Since:
- 1.7
-
rootN
public Complex rootN(int n)
Nth root.This implementation compute the principal nth root by using a branch cut along real negative axis.
- Specified by:
rootN
in interfaceCalculusFieldElement<Complex>
- Parameters:
n
- order of the root- Returns:
- nth root of the instance
- Since:
- 1.7
-
tan
public Complex tan()
Compute the tangent of this complex number. Implements the formula:tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
FastMath.sin(double)
,FastMath.cos(double)
,FastMath.cosh(double)
andFastMath.sinh(double)
.Returns
Infinite (or critical) values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaN
if either real or imaginary part of the input argument isNaN
.Examples:
tan(a ± INFINITY i) = 0 ± i tan(±INFINITY + bi) = NaN + NaN i tan(±INFINITY ± INFINITY i) = NaN + NaN i tan(±π/2 + 0 i) = ±INFINITY + NaN i
- Specified by:
tan
in interfaceCalculusFieldElement<Complex>
- Returns:
- the tangent of
this
.
-
tanh
public Complex tanh()
Compute the hyperbolic tangent of this complex number. Implements the formula:tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
FastMath.sin(double)
,FastMath.cos(double)
,FastMath.cosh(double)
andFastMath.sinh(double)
.Returns
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.NaN
if either real or imaginary part of the input argument isNaN
.Examples:
tanh(a ± INFINITY i) = NaN + NaN i tanh(±INFINITY + bi) = ±1 + 0 i tanh(±INFINITY ± INFINITY i) = NaN + NaN i tanh(0 + (π/2)i) = NaN + INFINITY i
- Specified by:
tanh
in interfaceCalculusFieldElement<Complex>
- Returns:
- the hyperbolic tangent of
this
.
-
getArgument
public double getArgument()
Compute the argument of this complex number. The argument is the angle phi between the positive real axis and the point representing this number in the complex plane. The value returned is between -PI (not inclusive) and PI (inclusive), with negative values returned for numbers with negative imaginary parts.If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are handled as
Math.atan2
handles them, essentially treating finite parts as zero in the presence of an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite parts. See the javadoc forMath.atan2
for full details.- Returns:
- the argument of
this
.
-
nthRoot
public List<Complex> nthRoot(int n) throws MathIllegalArgumentException
Computes the n-th roots of this complex number. The nth roots are defined by the formula:zk = abs1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
k=0, 1, ..., n-1
, whereabs
andphi
are respectively themodulus
andargument
of this complex number.If one or both parts of this complex number is NaN, a list with just one element,
NaN
is returned. if neither part is NaN, but at least one part is infinite, the result is a one-element list containingINF
.- Parameters:
n
- Degree of root.- Returns:
- a List of all
n
-th roots ofthis
. - Throws:
MathIllegalArgumentException
- ifn <= 0
.
-
createComplex
protected Complex createComplex(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.- Parameters:
realPart
- Real part.imaginaryPart
- Imaginary part.- Returns:
- a new complex number instance.
- See Also:
valueOf(double, double)
-
valueOf
public static Complex valueOf(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.- Parameters:
realPart
- Real part.imaginaryPart
- Imaginary part.- Returns:
- a Complex instance.
-
valueOf
public static Complex valueOf(double realPart)
Create a complex number given only the real part.- Parameters:
realPart
- Real part.- Returns:
- a Complex instance.
-
newInstance
public Complex newInstance(double realPart)
Create an instance corresponding to a constant real value.- Specified by:
newInstance
in interfaceCalculusFieldElement<Complex>
- Parameters:
realPart
- constant real value- Returns:
- instance corresponding to a constant real value
-
readResolve
protected final Object readResolve()
Resolve the transient fields in a deserialized Complex Object. Subclasses will need to overridecreateComplex(double, double)
to deserialize properly.- Returns:
- A Complex instance with all fields resolved.
-
getField
public ComplexField getField()
Get theField
to which the instance belongs.- Specified by:
getField
in interfaceFieldElement<Complex>
- Returns:
Field
to which the instance belongs
-
scalb
public Complex scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalb
in interfaceCalculusFieldElement<Complex>
- Parameters:
n
- power of 2- Returns:
- this × 2n
- Since:
- 1.7
-
ulp
public Complex ulp()
Compute least significant bit (Unit in Last Position) for a number.- Specified by:
ulp
in interfaceCalculusFieldElement<Complex>
- Returns:
- ulp(this)
-
hypot
public Complex hypot(Complex y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypot
in interfaceCalculusFieldElement<Complex>
- Parameters:
y
- a value- Returns:
- sqrt(this2 +y2)
- Since:
- 1.7
-
linearCombination
public Complex linearCombination(Complex[] a, Complex[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match- Since:
- 1.7
-
linearCombination
public Complex linearCombination(double[] a, Complex[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match- Since:
- 1.7
-
linearCombination
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Complex>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- Since:
- 1.7
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public Complex getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPi
in interfaceCalculusFieldElement<Complex>
- Returns:
- Archimedes constant π
-
ceil
public Complex ceil()
Get the smallest whole number larger than instance.- Specified by:
ceil
in interfaceCalculusFieldElement<Complex>
- Returns:
- ceil(this)
- Since:
- 1.7
-
floor
public Complex floor()
Get the largest whole number smaller than instance.- Specified by:
floor
in interfaceCalculusFieldElement<Complex>
- Returns:
- floor(this)
- Since:
- 1.7
-
rint
public Complex rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rint
in interfaceCalculusFieldElement<Complex>
- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
- Since:
- 1.7
-
remainder
public Complex remainder(double a)
IEEE remainder operator.for complex numbers, the integer n corresponding to
this.subtract(remainder(a)).divide(a)
is a Wikipedia - Gaussian integer.- Specified by:
remainder
in interfaceCalculusFieldElement<Complex>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
- Since:
- 1.7
-
remainder
public Complex remainder(Complex a)
IEEE remainder operator.for complex numbers, the integer n corresponding to
this.subtract(remainder(a)).divide(a)
is a Wikipedia - Gaussian integer.- Specified by:
remainder
in interfaceCalculusFieldElement<Complex>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
- Since:
- 1.7
-
sign
public Complex sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
sign
in interfaceCalculusFieldElement<Complex>
- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
- Since:
- 2.0
-
copySign
public Complex copySign(Complex z)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.The signs of real and imaginary parts are copied independently.
- Specified by:
copySign
in interfaceCalculusFieldElement<Complex>
- Parameters:
z
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument - Since:
- 1.7
-
copySign
public Complex copySign(double r)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<Complex>
- Parameters:
r
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument - Since:
- 1.7
-
toDegrees
public Complex toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegrees
in interfaceCalculusFieldElement<Complex>
- Returns:
- instance converted into degrees
-
toRadians
public Complex toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadians
in interfaceCalculusFieldElement<Complex>
- Returns:
- instance converted into radians
-
compareTo
public int compareTo(Complex o)
Comparison us performed using real ordering as the primary sort order and imaginary ordering as the secondary sort order.
- Specified by:
compareTo
in interfaceComparable<Complex>
- Since:
- 3.0
-
-