Class MultistepFieldIntegrator<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.ode.AbstractFieldIntegrator<T>
-
- org.hipparchus.ode.nonstiff.AdaptiveStepsizeFieldIntegrator<T>
-
- org.hipparchus.ode.MultistepFieldIntegrator<T>
-
- Type Parameters:
T
- the type of the field elements
- All Implemented Interfaces:
FieldODEIntegrator<T>
- Direct Known Subclasses:
AdamsFieldIntegrator
public abstract class MultistepFieldIntegrator<T extends CalculusFieldElement<T>> extends AdaptiveStepsizeFieldIntegrator<T>
This class is the base class for multistep integrators for Ordinary Differential Equations.We define scaled derivatives si(n) at step n as: \[ \left\{\begin{align} s_1(n) &= h y'_n \text{ for first derivative}\\ s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\ s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\ &\cdots\\ s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative} \end{align}\right. \]
Rather than storing several previous steps separately, this implementation uses the Nordsieck vector with higher degrees scaled derivatives all taken at the same step (yn, s1(n) and rn) where rn is defined as: \[ r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T \] (we omit the k index in the notation for clarity)
Multistep integrators with Nordsieck representation are highly sensitive to large step changes because when the step is multiplied by factor a, the kth component of the Nordsieck vector is multiplied by ak and the last components are the least accurate ones. The default max growth factor is therefore set to a quite low value: 21/order.
-
-
Field Summary
Fields Modifier and Type Field Description protected Array2DRowFieldMatrix<T>
nordsieck
Nordsieck matrix of the higher scaled derivatives.protected T[]
scaled
First scaled derivative (h y').
-
Constructor Summary
Constructors Modifier Constructor Description protected
MultistepFieldIntegrator(Field<T> field, String name, int nSteps, int order, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance)
Build a multistep integrator with the given stepsize bounds.protected
MultistepFieldIntegrator(Field<T> field, String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build a multistep integrator with the given stepsize bounds.
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description protected double
computeStepGrowShrinkFactor(double error)
Compute step grow/shrink factor according to normalized error.double
getMaxGrowth()
Get the maximal growth factor for stepsize control.double
getMinReduction()
Get the minimal reduction factor for stepsize control.int
getNSteps()
Get the number of steps of the multistep method (excluding the one being computed).double
getSafety()
Get the safety factor for stepsize control.FieldODEIntegrator<T>
getStarterIntegrator()
Get the starter integrator.protected abstract Array2DRowFieldMatrix<T>
initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.protected void
rescale(T newStepSize)
Rescale the instance.void
setMaxGrowth(double maxGrowth)
Set the maximal growth factor for stepsize control.void
setMinReduction(double minReduction)
Set the minimal reduction factor for stepsize control.void
setSafety(double safety)
Set the safety factor for stepsize control.void
setStarterIntegrator(FieldODEIntegrator<T> starterIntegrator)
Set the starter integrator.protected void
start(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T t)
Start the integration.-
Methods inherited from class org.hipparchus.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
getMaxStep, getMinStep, getStepSizeHelper, initializeStep, resetInternalState, sanityChecks, setInitialStepSize, setStepSizeControl, setStepSizeControl
-
Methods inherited from class org.hipparchus.ode.AbstractFieldIntegrator
acceptStep, addEventDetector, addStepEndHandler, addStepHandler, clearEventDetectors, clearStepEndHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getEquations, getEvaluations, getEvaluationsCounter, getEventDetectors, getField, getMaxEvaluations, getName, getStepEndHandlers, getStepHandlers, getStepSize, getStepStart, initIntegration, isLastStep, resetOccurred, setIsLastStep, setMaxEvaluations, setStateInitialized, setStepSize, setStepStart
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.ode.FieldODEIntegrator
integrate
-
-
-
-
Field Detail
-
scaled
protected T extends CalculusFieldElement<T>[] scaled
First scaled derivative (h y').
-
nordsieck
protected Array2DRowFieldMatrix<T extends CalculusFieldElement<T>> nordsieck
Nordsieck matrix of the higher scaled derivatives.(h2/2 y'', h3/6 y''' ..., hk/k! y(k))
-
-
Constructor Detail
-
MultistepFieldIntegrator
protected MultistepFieldIntegrator(Field<T> field, String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance) throws MathIllegalArgumentException
Build a multistep integrator with the given stepsize bounds.The default starter integrator is set to the
Dormand-Prince 8(5,3)
integrator with some defaults settings.The default max growth factor is set to a quite low value: 21/order.
- Parameters:
field
- field to which the time and state vector elements belongname
- name of the methodnSteps
- number of steps of the multistep method (excluding the one being computed)order
- order of the methodminStep
- minimal step (must be positive even for backward integration), the last step can be smaller than thismaxStep
- maximal step (must be positive even for backward integration)scalAbsoluteTolerance
- allowed absolute errorscalRelativeTolerance
- allowed relative error- Throws:
MathIllegalArgumentException
- if number of steps is smaller than 2
-
MultistepFieldIntegrator
protected MultistepFieldIntegrator(Field<T> field, String name, int nSteps, int order, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance)
Build a multistep integrator with the given stepsize bounds.The default starter integrator is set to the
Dormand-Prince 8(5,3)
integrator with some defaults settings.The default max growth factor is set to a quite low value: 21/order.
- Parameters:
field
- field to which the time and state vector elements belongname
- name of the methodnSteps
- number of steps of the multistep method (excluding the one being computed)order
- order of the methodminStep
- minimal step (must be positive even for backward integration), the last step can be smaller than thismaxStep
- maximal step (must be positive even for backward integration)vecAbsoluteTolerance
- allowed absolute errorvecRelativeTolerance
- allowed relative error
-
-
Method Detail
-
getStarterIntegrator
public FieldODEIntegrator<T> getStarterIntegrator()
Get the starter integrator.- Returns:
- starter integrator
-
setStarterIntegrator
public void setStarterIntegrator(FieldODEIntegrator<T> starterIntegrator)
Set the starter integrator.The various step and event handlers for this starter integrator will be managed automatically by the multi-step integrator. Any user configuration for these elements will be cleared before use.
- Parameters:
starterIntegrator
- starter integrator
-
start
protected void start(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T t) throws MathIllegalArgumentException, MathIllegalStateException
Start the integration.This method computes one step using the underlying starter integrator, and initializes the Nordsieck vector at step start. The starter integrator purpose is only to establish initial conditions, it does not really change time by itself. The top level multistep integrator remains in charge of handling time propagation and events handling as it will starts its own computation right from the beginning. In a sense, the starter integrator can be seen as a dummy one and so it will never trigger any user event nor call any user step handler.
- Parameters:
equations
- complete set of differential equations to integrateinitialState
- initial state (time, primary and secondary state vectors)t
- target time for the integration (can be set to a value smaller thant0
for backward integration)- Throws:
MathIllegalArgumentException
- if arrays dimension do not match equations settingsMathIllegalArgumentException
- if integration step is too smallMathIllegalStateException
- if the number of functions evaluations is exceededMathIllegalArgumentException
- if the location of an event cannot be bracketed
-
initializeHighOrderDerivatives
protected abstract Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.- Parameters:
h
- step size to use for scalingt
- first steps timesy
- first steps statesyDot
- first steps derivatives- Returns:
- Nordieck vector at first step (h2/2 y''n, h3/6 y'''n ... hk/k! y(k)n)
-
getMinReduction
public double getMinReduction()
Get the minimal reduction factor for stepsize control.- Returns:
- minimal reduction factor
-
setMinReduction
public void setMinReduction(double minReduction)
Set the minimal reduction factor for stepsize control.- Parameters:
minReduction
- minimal reduction factor
-
getMaxGrowth
public double getMaxGrowth()
Get the maximal growth factor for stepsize control.- Returns:
- maximal growth factor
-
setMaxGrowth
public void setMaxGrowth(double maxGrowth)
Set the maximal growth factor for stepsize control.- Parameters:
maxGrowth
- maximal growth factor
-
getSafety
public double getSafety()
Get the safety factor for stepsize control.- Returns:
- safety factor
-
setSafety
public void setSafety(double safety)
Set the safety factor for stepsize control.- Parameters:
safety
- safety factor
-
getNSteps
public int getNSteps()
Get the number of steps of the multistep method (excluding the one being computed).- Returns:
- number of steps of the multistep method (excluding the one being computed)
-
rescale
protected void rescale(T newStepSize)
Rescale the instance.Since the scaled and Nordsieck arrays are shared with the caller, this method has the side effect of rescaling this arrays in the caller too.
- Parameters:
newStepSize
- new step size to use in the scaled and Nordsieck arrays
-
computeStepGrowShrinkFactor
protected double computeStepGrowShrinkFactor(double error)
Compute step grow/shrink factor according to normalized error.- Parameters:
error
- normalized error of the current step- Returns:
- grow/shrink factor for next step
-
-