Class JacobiEllipticBuilder


  • public class JacobiEllipticBuilder
    extends Object
    Builder for algorithms compmuting Jacobi elliptic functions.

    The Jacobi elliptic functions are related to elliptic integrals.

    There are different conventions to interpret the arguments of Jacobi elliptic functions. The first argument may be the amplitude φ, but is more often the variable u (with sn(u) = sin(φ) and cn(u) = cos(φ)). The second argument is either the modulus k or the parameter m with m = k². In Hipparchus, we adopted the convention to use u and m.

    Since:
    2.0
    • Method Detail

      • build

        public static JacobiElliptic build​(double m)
        Build an algorithm for computing Jacobi elliptic functions.
        Parameters:
        m - parameter of the Jacobi elliptic function
        Returns:
        selected algorithm
      • build

        public static <T extends CalculusFieldElement<T>> FieldJacobiElliptic<T> build​(T m)
        Build an algorithm for computing Jacobi elliptic functions.
        Type Parameters:
        T - type of the field elements
        Parameters:
        m - parameter of the Jacobi elliptic function
        Returns:
        selected algorithm
      • build

        public static FieldJacobiElliptic<Complex> build​(Complex m)
        Build an algorithm for computing Jacobi elliptic functions.
        Parameters:
        m - parameter of the Jacobi elliptic function
        Returns:
        selected algorithm
      • build

        public static <T extends CalculusFieldElement<T>> FieldJacobiElliptic<FieldComplex<T>> build​(FieldComplex<T> m)
        Build an algorithm for computing Jacobi elliptic functions.
        Type Parameters:
        T - type of the field elements
        Parameters:
        m - parameter of the Jacobi elliptic function
        Returns:
        selected algorithm