Class JacobiElliptic
- java.lang.Object
-
- org.hipparchus.special.elliptic.jacobi.JacobiElliptic
-
public abstract class JacobiElliptic extends Object
Algorithm computing Jacobi elliptic functions.- Since:
- 2.0
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
JacobiElliptic(double m)
Simple constructor.
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description double
arccd(double x)
Evaluate inverse of Jacobi elliptic function cd.double
arccn(double x)
Evaluate inverse of Jacobi elliptic function cn.double
arccs(double x)
Evaluate inverse of Jacobi elliptic function cs.double
arcdc(double x)
Evaluate inverse of Jacobi elliptic function dc.double
arcdn(double x)
Evaluate inverse of Jacobi elliptic function dn.double
arcds(double x)
Evaluate inverse of Jacobi elliptic function ds.double
arcnc(double x)
Evaluate inverse of Jacobi elliptic function nc.double
arcnd(double x)
Evaluate inverse of Jacobi elliptic function nd.double
arcns(double x)
Evaluate inverse of Jacobi elliptic function ns.double
arcsc(double x)
Evaluate inverse of Jacobi elliptic function sc.double
arcsd(double x)
Evaluate inverse of Jacobi elliptic function sd.double
arcsn(double x)
Evaluate inverse of Jacobi elliptic function sn.double
getM()
Get the parameter of the function.CopolarC
valuesC(double u)
Evaluate the three subsidiary Jacobi elliptic functions with pole at point c in Glaisher’s Notation.CopolarD
valuesD(double u)
Evaluate the three subsidiary Jacobi elliptic functions with pole at point d in Glaisher’s Notation.abstract CopolarN
valuesN(double u)
Evaluate the three principal Jacobi elliptic functions with pole at point n in Glaisher’s Notation.CopolarS
valuesS(double u)
Evaluate the three subsidiary Jacobi elliptic functions with pole at point s in Glaisher’s Notation.
-
-
-
Method Detail
-
getM
public double getM()
Get the parameter of the function.- Returns:
- parameter of the function
-
valuesN
public abstract CopolarN valuesN(double u)
Evaluate the three principal Jacobi elliptic functions with pole at point n in Glaisher’s Notation.- Parameters:
u
- argument of the functions- Returns:
- copolar trio containing the three principal Jacobi
elliptic functions
sn(u|m)
,cn(u|m)
, anddn(u|m)
.
-
valuesS
public CopolarS valuesS(double u)
Evaluate the three subsidiary Jacobi elliptic functions with pole at point s in Glaisher’s Notation.- Parameters:
u
- argument of the functions- Returns:
- copolar trio containing the three subsidiary Jacobi
elliptic functions
cs(u|m)
,ds(u|m)
andns(u|m)
.
-
valuesC
public CopolarC valuesC(double u)
Evaluate the three subsidiary Jacobi elliptic functions with pole at point c in Glaisher’s Notation.- Parameters:
u
- argument of the functions- Returns:
- copolar trio containing the three subsidiary Jacobi
elliptic functions
dc(u|m)
,nc(u|m)
, andsc(u|m)
.
-
valuesD
public CopolarD valuesD(double u)
Evaluate the three subsidiary Jacobi elliptic functions with pole at point d in Glaisher’s Notation.- Parameters:
u
- argument of the functions- Returns:
- copolar trio containing the three subsidiary Jacobi
elliptic functions
nd(u|m)
,sd(u|m)
, andcd(u|m)
.
-
arcsn
public double arcsn(double x)
Evaluate inverse of Jacobi elliptic function sn.- Parameters:
x
- value of Jacobi elliptic functionsn(u|m)
- Returns:
- u such that
x=sn(u|m)
- Since:
- 2.1
-
arccn
public double arccn(double x)
Evaluate inverse of Jacobi elliptic function cn.- Parameters:
x
- value of Jacobi elliptic functioncn(u|m)
- Returns:
- u such that
x=cn(u|m)
- Since:
- 2.1
-
arcdn
public double arcdn(double x)
Evaluate inverse of Jacobi elliptic function dn.- Parameters:
x
- value of Jacobi elliptic functiondn(u|m)
- Returns:
- u such that
x=dn(u|m)
- Since:
- 2.1
-
arccs
public double arccs(double x)
Evaluate inverse of Jacobi elliptic function cs.- Parameters:
x
- value of Jacobi elliptic functioncs(u|m)
- Returns:
- u such that
x=cs(u|m)
- Since:
- 2.1
-
arcds
public double arcds(double x)
Evaluate inverse of Jacobi elliptic function ds.- Parameters:
x
- value of Jacobi elliptic functionds(u|m)
- Returns:
- u such that
x=ds(u|m)
- Since:
- 2.1
-
arcns
public double arcns(double x)
Evaluate inverse of Jacobi elliptic function ns.- Parameters:
x
- value of Jacobi elliptic functionns(u|m)
- Returns:
- u such that
x=ns(u|m)
- Since:
- 2.1
-
arcdc
public double arcdc(double x)
Evaluate inverse of Jacobi elliptic function dc.- Parameters:
x
- value of Jacobi elliptic functiondc(u|m)
- Returns:
- u such that
x=dc(u|m)
- Since:
- 2.1
-
arcnc
public double arcnc(double x)
Evaluate inverse of Jacobi elliptic function nc.- Parameters:
x
- value of Jacobi elliptic functionnc(u|m)
- Returns:
- u such that
x=nc(u|m)
- Since:
- 2.1
-
arcsc
public double arcsc(double x)
Evaluate inverse of Jacobi elliptic function sc.- Parameters:
x
- value of Jacobi elliptic functionsc(u|m)
- Returns:
- u such that
x=sc(u|m)
- Since:
- 2.1
-
arcnd
public double arcnd(double x)
Evaluate inverse of Jacobi elliptic function nd.- Parameters:
x
- value of Jacobi elliptic functionnd(u|m)
- Returns:
- u such that
x=nd(u|m)
- Since:
- 2.1
-
arcsd
public double arcsd(double x)
Evaluate inverse of Jacobi elliptic function sd.- Parameters:
x
- value of Jacobi elliptic functionsd(u|m)
- Returns:
- u such that
x=sd(u|m)
- Since:
- 2.1
-
arccd
public double arccd(double x)
Evaluate inverse of Jacobi elliptic function cd.- Parameters:
x
- value of Jacobi elliptic functioncd(u|m)
- Returns:
- u such that
x=cd(u|m)
- Since:
- 2.1
-
-