Class EmbeddedRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.ode.AbstractFieldIntegrator<T>
-
- org.hipparchus.ode.nonstiff.AdaptiveStepsizeFieldIntegrator<T>
-
- org.hipparchus.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator<T>
-
- Type Parameters:
T
- the type of the field elements
- All Implemented Interfaces:
FieldODEIntegrator<T>
,FieldButcherArrayProvider<T>
- Direct Known Subclasses:
DormandPrince54FieldIntegrator
,DormandPrince853FieldIntegrator
,HighamHall54FieldIntegrator
public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>> extends AdaptiveStepsizeFieldIntegrator<T> implements FieldButcherArrayProvider<T>
This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.These methods are embedded explicit Runge-Kutta methods with two sets of coefficients allowing to estimate the error, their Butcher arrays are as follows :
0 | c2 | a21 c3 | a31 a32 ... | ... cs | as1 as2 ... ass-1 |-------------------------- | b1 b2 ... bs-1 bs | b'1 b'2 ... b's-1 b's
In fact, we rather use the array defined by ej = bj - b'j to compute directly the error rather than computing two estimates and then comparing them.
Some methods are qualified as fsal (first same as last) methods. This means the last evaluation of the derivatives in one step is the same as the first in the next step. Then, this evaluation can be reused from one step to the next one and the cost of such a method is really s-1 evaluations despite the method still has s stages. This behaviour is true only for successful steps, if the step is rejected after the error estimation phase, no evaluation is saved. For an fsal method, we have cs = 1 and asi = bi for all i.
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
EmbeddedRungeKuttaFieldIntegrator(Field<T> field, String name, int fsal, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.protected
EmbeddedRungeKuttaFieldIntegrator(Field<T> field, String name, int fsal, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>
createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected abstract double
estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected T
fraction(double p, double q)
Create a fraction.protected T
fraction(int p, int q)
Create a fraction.T
getMaxGrowth()
Get the maximal growth factor for stepsize control.T
getMinReduction()
Get the minimal reduction factor for stepsize control.abstract int
getOrder()
Get the order of the method.T
getSafety()
Get the safety factor for stepsize control.FieldODEStateAndDerivative<T>
integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
setMaxGrowth(T maxGrowth)
Set the maximal growth factor for stepsize control.void
setMinReduction(T minReduction)
Set the minimal reduction factor for stepsize control.void
setSafety(T safety)
Set the safety factor for stepsize control.-
Methods inherited from class org.hipparchus.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
getMaxStep, getMinStep, getStepSizeHelper, initializeStep, resetInternalState, sanityChecks, setInitialStepSize, setStepSizeControl, setStepSizeControl
-
Methods inherited from class org.hipparchus.ode.AbstractFieldIntegrator
acceptStep, addEventDetector, addStepEndHandler, addStepHandler, clearEventDetectors, clearStepEndHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getEquations, getEvaluations, getEvaluationsCounter, getEventDetectors, getField, getMaxEvaluations, getName, getStepEndHandlers, getStepHandlers, getStepSize, getStepStart, initIntegration, isLastStep, resetOccurred, setIsLastStep, setMaxEvaluations, setStateInitialized, setStepSize, setStepStart
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.ode.nonstiff.FieldButcherArrayProvider
getA, getB, getC
-
-
-
-
Constructor Detail
-
EmbeddedRungeKuttaFieldIntegrator
protected EmbeddedRungeKuttaFieldIntegrator(Field<T> field, String name, int fsal, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.- Parameters:
field
- field to which the time and state vector elements belongname
- name of the methodfsal
- index of the pre-computed derivative for fsal methods or -1 if method is not fsalminStep
- minimal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than thismaxStep
- maximal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than thisscalAbsoluteTolerance
- allowed absolute errorscalRelativeTolerance
- allowed relative error
-
EmbeddedRungeKuttaFieldIntegrator
protected EmbeddedRungeKuttaFieldIntegrator(Field<T> field, String name, int fsal, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.- Parameters:
field
- field to which the time and state vector elements belongname
- name of the methodfsal
- index of the pre-computed derivative for fsal methods or -1 if method is not fsalminStep
- minimal step (must be positive even for backward integration), the last step can be smaller than thismaxStep
- maximal step (must be positive even for backward integration)vecAbsoluteTolerance
- allowed absolute errorvecRelativeTolerance
- allowed relative error
-
-
Method Detail
-
fraction
protected T fraction(int p, int q)
Create a fraction.- Parameters:
p
- numeratorq
- denominator- Returns:
- p/q computed in the instance field
-
fraction
protected T fraction(double p, double q)
Create a fraction.- Parameters:
p
- numeratorq
- denominator- Returns:
- p/q computed in the instance field
-
createInterpolator
protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T> createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.- Parameters:
forward
- integration direction indicatoryDotK
- slopes at the intermediate pointsglobalPreviousState
- start of the global stepglobalCurrentState
- end of the global stepmapper
- equations mapper for the all equations- Returns:
- external weights for the high order method from Butcher array
-
getOrder
public abstract int getOrder()
Get the order of the method.- Returns:
- order of the method
-
getSafety
public T getSafety()
Get the safety factor for stepsize control.- Returns:
- safety factor
-
setSafety
public void setSafety(T safety)
Set the safety factor for stepsize control.- Parameters:
safety
- safety factor
-
integrate
public FieldODEStateAndDerivative<T> integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime) throws MathIllegalArgumentException, MathIllegalStateException
Integrate the differential equations up to the given time.This method solves an Initial Value Problem (IVP).
Since this method stores some internal state variables made available in its public interface during integration (
FieldODEIntegrator.getCurrentSignedStepsize()
), it is not thread-safe.- Specified by:
integrate
in interfaceFieldODEIntegrator<T extends CalculusFieldElement<T>>
- Parameters:
equations
- differential equations to integrateinitialState
- initial state (time, primary and secondary state vectors)finalTime
- target time for the integration (can be set to a value smaller thant0
for backward integration)- Returns:
- final state, its time will be the same as
finalTime
if integration reached its target, but may be different if someFieldODEEventHandler
stops it at some point. - Throws:
MathIllegalArgumentException
- if integration step is too smallMathIllegalStateException
- if the number of functions evaluations is exceeded
-
getMinReduction
public T getMinReduction()
Get the minimal reduction factor for stepsize control.- Returns:
- minimal reduction factor
-
setMinReduction
public void setMinReduction(T minReduction)
Set the minimal reduction factor for stepsize control.- Parameters:
minReduction
- minimal reduction factor
-
getMaxGrowth
public T getMaxGrowth()
Get the maximal growth factor for stepsize control.- Returns:
- maximal growth factor
-
setMaxGrowth
public void setMaxGrowth(T maxGrowth)
Set the maximal growth factor for stepsize control.- Parameters:
maxGrowth
- maximal growth factor
-
estimateError
protected abstract double estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.- Parameters:
yDotK
- derivatives computed during the first stagesy0
- estimate of the step at the start of the stepy1
- estimate of the step at the end of the steph
- current step- Returns:
- error ratio, greater than 1 if step should be rejected
-
-