Class Gradient
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.Gradient
-
- All Implemented Interfaces:
Serializable,Derivative<Gradient>,CalculusFieldElement<Gradient>,FieldElement<Gradient>
public class Gradient extends Object implements Derivative<Gradient>, CalculusFieldElement<Gradient>, Serializable
Class representing both the value and the differentials of a function.This class is a stripped-down version of
DerivativeStructurewithderivation orderlimited to one. It should have less overhead thanDerivativeStructurein its domain.This class is an implementation of Rall's numbers. Rall's numbers are an extension to the real numbers used throughout mathematical expressions; they hold the derivative together with the value of a function.
Gradientinstances can be used directly thanks to the arithmetic operators to the mathematical functions provided as methods by this class (+, -, *, /, %, sin, cos ...).Implementing complex expressions by hand using these classes is a tedious and error-prone task but has the advantage of having no limitation on the derivation order despite not requiring users to compute the derivatives by themselves.
Instances of this class are guaranteed to be immutable.
-
-
Constructor Summary
Constructors Constructor Description Gradient(double value, double... gradient)Build an instance with values and derivative.Gradient(DerivativeStructure ds)Build an instance from aDerivativeStructure.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description Gradientabs()absolute value.Gradientacos()Arc cosine operation.Gradientacosh()Inverse hyperbolic cosine operation.Gradientadd(double a)'+' operator.Gradientadd(Gradient a)Compute this + a.Gradientasin()Arc sine operation.Gradientasinh()Inverse hyperbolic sine operation.Gradientatan()Arc tangent operation.Gradientatan2(Gradient x)Two arguments arc tangent operation.Gradientatanh()Inverse hyperbolic tangent operation.Gradientcbrt()Cubic root.Gradientceil()Get the smallest whole number larger than instance.Gradientcompose(double... f)Compute composition of the instance by a univariate function.static Gradientconstant(int freeParameters, double value)Build an instance corresponding to a constant value.GradientcopySign(double sign)Returns the instance with the sign of the argument.GradientcopySign(Gradient sign)Returns the instance with the sign of the argument.Gradientcos()Cosine operation.Gradientcosh()Hyperbolic cosine operation.Gradientdivide(double a)'÷' operator.Gradientdivide(Gradient a)Compute this ÷ a.booleanequals(Object other)Test for the equality of two univariate derivatives.Gradientexp()Exponential.Gradientexpm1()Exponential minus 1.Gradientfloor()Get the largest whole number smaller than instance.intgetExponent()Return the exponent of the instance, removing the bias.GradientFieldgetField()Get theFieldto which the instance belongs.intgetFreeParameters()Get the number of free parameters.double[]getGradient()Get the gradient part of the function.intgetOrder()Get the derivation order.doublegetPartialDerivative(int n)Get the partial derivative with respect to one parameter.doublegetPartialDerivative(int... orders)Get a partial derivative.GradientgetPi()Get the Archimedes constant π.doublegetReal()Get the real value of the number.doublegetValue()Get the value part of the function.inthashCode()Get a hashCode for the univariate derivative.Gradienthypot(Gradient y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.GradientlinearCombination(double[] a, Gradient[] b)Compute a linear combination.GradientlinearCombination(double a1, Gradient b1, double a2, Gradient b2)Compute a linear combination.GradientlinearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3)Compute a linear combination.GradientlinearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3, double a4, Gradient b4)Compute a linear combination.GradientlinearCombination(Gradient[] a, Gradient[] b)Compute a linear combination.GradientlinearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2)Compute a linear combination.GradientlinearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3)Compute a linear combination.GradientlinearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3, Gradient a4, Gradient b4)Compute a linear combination.Gradientlog()Natural logarithm.Gradientlog10()Base 10 logarithm.Gradientlog1p()Shifted natural logarithm.Gradientmultiply(double a)'×' operator.Gradientmultiply(int n)Compute n × this.Gradientmultiply(Gradient a)Compute this × a.Gradientnegate()Returns the additive inverse ofthiselement.GradientnewInstance(double c)Create an instance corresponding to a constant real value.Gradientpow(double p)Power operation.static Gradientpow(double a, Gradient x)Compute ax where a is a double and x aGradientGradientpow(int n)Integer power operation.Gradientpow(Gradient e)Power operation.Gradientreciprocal()Returns the multiplicative inverse ofthiselement.Gradientremainder(double a)IEEE remainder operator.Gradientremainder(Gradient a)IEEE remainder operator.Gradientrint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.GradientrootN(int n)Nth root.Gradientscalb(int n)Multiply the instance by a power of 2.Gradientsign()Compute the sign of the instance.Gradientsin()Sine operation.FieldSinCos<Gradient>sinCos()Combined Sine and Cosine operation.Gradientsinh()Hyperbolic sine operation.FieldSinhCosh<Gradient>sinhCosh()Combined hyperbolic sine and sosine operation.Gradientsqrt()Square root.Gradientsubtract(double a)'-' operator.Gradientsubtract(Gradient a)Compute this - a.Gradienttan()Tangent operation.Gradienttanh()Hyperbolic tangent operation.doubletaylor(double... delta)Evaluate Taylor expansion a derivative structure.GradienttoDegrees()Convert radians to degrees, with error of less than 0.5 ULPDerivativeStructuretoDerivativeStructure()Convert the instance to aDerivativeStructure.GradienttoRadians()Convert degrees to radians, with error of less than 0.5 ULPGradientulp()Compute least significant bit (Unit in Last Position) for a number.static Gradientvariable(int freeParameters, int index, double value)Build aGradientrepresenting a variable.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Constructor Detail
-
Gradient
public Gradient(double value, double... gradient)Build an instance with values and derivative.- Parameters:
value- value of the functiongradient- gradient of the function
-
Gradient
public Gradient(DerivativeStructure ds) throws MathIllegalArgumentException
Build an instance from aDerivativeStructure.- Parameters:
ds- derivative structure- Throws:
MathIllegalArgumentException- ifdsorder is not 1
-
-
Method Detail
-
constant
public static Gradient constant(int freeParameters, double value)
Build an instance corresponding to a constant value.- Parameters:
freeParameters- number of free parameters (i.e. dimension of the gradient)value- constant value of the function- Returns:
- a
Gradientwith a constant value and all derivatives set to 0.0
-
variable
public static Gradient variable(int freeParameters, int index, double value)
Build aGradientrepresenting a variable.Instances built using this method are considered to be the free variables with respect to which differentials are computed. As such, their differential with respect to themselves is +1.
- Parameters:
freeParameters- number of free parameters (i.e. dimension of the gradient)index- index of the variable (from 0 togetFreeParameters()- 1)value- value of the variable- Returns:
- a
Gradientwith a constant value and all derivatives set to 0.0 except the one atindexwhich will be set to 1.0
-
newInstance
public Gradient newInstance(double c)
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<Gradient>- Parameters:
c- constant real value- Returns:
- instance corresponding to a constant real value
-
getReal
public double getReal()
Get the real value of the number.- Specified by:
getRealin interfaceFieldElement<Gradient>- Returns:
- real value
-
getValue
public double getValue()
Get the value part of the function.- Specified by:
getValuein interfaceDerivative<Gradient>- Returns:
- value part of the value of the function
-
getGradient
public double[] getGradient()
Get the gradient part of the function.- Returns:
- gradient part of the value of the function
- See Also:
getPartialDerivative(int)
-
getFreeParameters
public int getFreeParameters()
Get the number of free parameters.- Specified by:
getFreeParametersin interfaceDerivative<Gradient>- Returns:
- number of free parameters
-
getOrder
public int getOrder()
Get the derivation order.- Specified by:
getOrderin interfaceDerivative<Gradient>- Returns:
- derivation order
-
getPartialDerivative
public double getPartialDerivative(int... orders) throws MathIllegalArgumentExceptionGet a partial derivative.- Specified by:
getPartialDerivativein interfaceDerivative<Gradient>- Parameters:
orders- derivation orders with respect to each variable (if all orders are 0, the value is returned)- Returns:
- partial derivative
- Throws:
MathIllegalArgumentException- if the numbers of variables does not match the instance- See Also:
Derivative.getValue()
-
getPartialDerivative
public double getPartialDerivative(int n) throws MathIllegalArgumentExceptionGet the partial derivative with respect to one parameter.- Parameters:
n- index of the parameter (counting from 0)- Returns:
- partial derivative with respect to the nth parameter
- Throws:
MathIllegalArgumentException- if n is either negative or larger or equal togetFreeParameters()
-
toDerivativeStructure
public DerivativeStructure toDerivativeStructure()
Convert the instance to aDerivativeStructure.- Returns:
- derivative structure with same value and derivative as the instance
-
add
public Gradient add(double a)
'+' operator.- Specified by:
addin interfaceCalculusFieldElement<Gradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this+a
-
add
public Gradient add(Gradient a)
Compute this + a.- Specified by:
addin interfaceFieldElement<Gradient>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
subtract
public Gradient subtract(double a)
'-' operator.- Specified by:
subtractin interfaceCalculusFieldElement<Gradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public Gradient subtract(Gradient a)
Compute this - a.- Specified by:
subtractin interfaceFieldElement<Gradient>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
multiply
public Gradient multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiplyin interfaceFieldElement<Gradient>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
multiply
public Gradient multiply(double a)
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<Gradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public Gradient multiply(Gradient a)
Compute this × a.- Specified by:
multiplyin interfaceFieldElement<Gradient>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
divide
public Gradient divide(double a)
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<Gradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public Gradient divide(Gradient a)
Compute this ÷ a.- Specified by:
dividein interfaceFieldElement<Gradient>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
remainder
public Gradient remainder(double a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<Gradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public Gradient remainder(Gradient a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<Gradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
negate
public Gradient negate()
Returns the additive inverse ofthiselement.- Specified by:
negatein interfaceFieldElement<Gradient>- Returns:
- the opposite of
this.
-
abs
public Gradient abs()
absolute value.Just another name for
CalculusFieldElement.norm()- Specified by:
absin interfaceCalculusFieldElement<Gradient>- Returns:
- abs(this)
-
ceil
public Gradient ceil()
Get the smallest whole number larger than instance.- Specified by:
ceilin interfaceCalculusFieldElement<Gradient>- Returns:
- ceil(this)
-
floor
public Gradient floor()
Get the largest whole number smaller than instance.- Specified by:
floorin interfaceCalculusFieldElement<Gradient>- Returns:
- floor(this)
-
rint
public Gradient rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rintin interfaceCalculusFieldElement<Gradient>- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public Gradient sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
signin interfaceCalculusFieldElement<Gradient>- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public Gradient copySign(Gradient sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<Gradient>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public Gradient copySign(double sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<Gradient>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
getExponent
public int getExponent()
Return the exponent of the instance, removing the bias.For double numbers of the form 2x, the unbiased exponent is exactly x.
- Specified by:
getExponentin interfaceCalculusFieldElement<Gradient>- Returns:
- exponent for the instance, without bias
-
scalb
public Gradient scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<Gradient>- Parameters:
n- power of 2- Returns:
- this × 2n
-
ulp
public Gradient ulp()
Compute least significant bit (Unit in Last Position) for a number.The
ulpfunction is a step function, hence all its derivatives are 0.- Specified by:
ulpin interfaceCalculusFieldElement<Gradient>- Returns:
- ulp(this)
- Since:
- 2.0
-
hypot
public Gradient hypot(Gradient y)
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<Gradient>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
reciprocal
public Gradient reciprocal()
Returns the multiplicative inverse ofthiselement.- Specified by:
reciprocalin interfaceCalculusFieldElement<Gradient>- Specified by:
reciprocalin interfaceFieldElement<Gradient>- Returns:
- the inverse of
this.
-
compose
public Gradient compose(double... f)
Compute composition of the instance by a univariate function.- Specified by:
composein interfaceDerivative<Gradient>- Parameters:
f- array of value and derivatives of the function at the current point (i.e. [f(Derivative.getValue()), f'(Derivative.getValue()), f''(Derivative.getValue())...]).- Returns:
- f(this)
-
sqrt
public Gradient sqrt()
Square root.- Specified by:
sqrtin interfaceCalculusFieldElement<Gradient>- Returns:
- square root of the instance
-
cbrt
public Gradient cbrt()
Cubic root.- Specified by:
cbrtin interfaceCalculusFieldElement<Gradient>- Returns:
- cubic root of the instance
-
rootN
public Gradient rootN(int n)
Nth root.- Specified by:
rootNin interfaceCalculusFieldElement<Gradient>- Parameters:
n- order of the root- Returns:
- nth root of the instance
-
getField
public GradientField getField()
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<Gradient>- Returns:
Fieldto which the instance belongs
-
pow
public static Gradient pow(double a, Gradient x)
Compute ax where a is a double and x aGradient- Parameters:
a- number to exponentiatex- power to apply- Returns:
- ax
-
pow
public Gradient pow(double p)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<Gradient>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
public Gradient pow(int n)
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<Gradient>- Parameters:
n- power to apply- Returns:
- thisn
-
pow
public Gradient pow(Gradient e)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<Gradient>- Parameters:
e- exponent- Returns:
- thise
-
exp
public Gradient exp()
Exponential.- Specified by:
expin interfaceCalculusFieldElement<Gradient>- Returns:
- exponential of the instance
-
expm1
public Gradient expm1()
Exponential minus 1.- Specified by:
expm1in interfaceCalculusFieldElement<Gradient>- Returns:
- exponential minus one of the instance
-
log
public Gradient log()
Natural logarithm.- Specified by:
login interfaceCalculusFieldElement<Gradient>- Returns:
- logarithm of the instance
-
log1p
public Gradient log1p()
Shifted natural logarithm.- Specified by:
log1pin interfaceCalculusFieldElement<Gradient>- Returns:
- logarithm of one plus the instance
-
log10
public Gradient log10()
Base 10 logarithm.- Specified by:
log10in interfaceCalculusFieldElement<Gradient>- Returns:
- base 10 logarithm of the instance
-
cos
public Gradient cos()
Cosine operation.- Specified by:
cosin interfaceCalculusFieldElement<Gradient>- Returns:
- cos(this)
-
sin
public Gradient sin()
Sine operation.- Specified by:
sinin interfaceCalculusFieldElement<Gradient>- Returns:
- sin(this)
-
sinCos
public FieldSinCos<Gradient> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCosin interfaceCalculusFieldElement<Gradient>- Returns:
- [sin(this), cos(this)]
-
tan
public Gradient tan()
Tangent operation.- Specified by:
tanin interfaceCalculusFieldElement<Gradient>- Returns:
- tan(this)
-
acos
public Gradient acos()
Arc cosine operation.- Specified by:
acosin interfaceCalculusFieldElement<Gradient>- Returns:
- acos(this)
-
asin
public Gradient asin()
Arc sine operation.- Specified by:
asinin interfaceCalculusFieldElement<Gradient>- Returns:
- asin(this)
-
atan
public Gradient atan()
Arc tangent operation.- Specified by:
atanin interfaceCalculusFieldElement<Gradient>- Returns:
- atan(this)
-
atan2
public Gradient atan2(Gradient x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<Gradient>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
cosh
public Gradient cosh()
Hyperbolic cosine operation.- Specified by:
coshin interfaceCalculusFieldElement<Gradient>- Returns:
- cosh(this)
-
sinh
public Gradient sinh()
Hyperbolic sine operation.- Specified by:
sinhin interfaceCalculusFieldElement<Gradient>- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<Gradient> sinhCosh()
Combined hyperbolic sine and sosine operation.- Specified by:
sinhCoshin interfaceCalculusFieldElement<Gradient>- Returns:
- [sinh(this), cosh(this)]
-
tanh
public Gradient tanh()
Hyperbolic tangent operation.- Specified by:
tanhin interfaceCalculusFieldElement<Gradient>- Returns:
- tanh(this)
-
acosh
public Gradient acosh()
Inverse hyperbolic cosine operation.- Specified by:
acoshin interfaceCalculusFieldElement<Gradient>- Returns:
- acosh(this)
-
asinh
public Gradient asinh()
Inverse hyperbolic sine operation.- Specified by:
asinhin interfaceCalculusFieldElement<Gradient>- Returns:
- asin(this)
-
atanh
public Gradient atanh()
Inverse hyperbolic tangent operation.- Specified by:
atanhin interfaceCalculusFieldElement<Gradient>- Returns:
- atanh(this)
-
toDegrees
public Gradient toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<Gradient>- Returns:
- instance converted into degrees
-
toRadians
public Gradient toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<Gradient>- Returns:
- instance converted into radians
-
taylor
public double taylor(double... delta)
Evaluate Taylor expansion a derivative structure.- Parameters:
delta- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
linearCombination
public Gradient linearCombination(Gradient[] a, Gradient[] b)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public Gradient linearCombination(double[] a, Gradient[] b)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public Gradient linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Gradient linearCombination(double a1, Gradient b1, double a2, Gradient b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Gradient linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Gradient linearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Gradient linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3, Gradient a4, Gradient b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Gradient linearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3, double a4, Gradient b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<Gradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public Gradient getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<Gradient>- Returns:
- Archimedes constant π
-
equals
public boolean equals(Object other)
Test for the equality of two univariate derivatives.univariate derivatives are considered equal if they have the same derivatives.
-
-