Class FieldDerivativeStructure<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.FieldDerivativeStructure<T>
-
- Type Parameters:
T
- the type of the field elements
- All Implemented Interfaces:
FieldDerivative<T,FieldDerivativeStructure<T>>
,CalculusFieldElement<FieldDerivativeStructure<T>>
,FieldElement<FieldDerivativeStructure<T>>
public class FieldDerivativeStructure<T extends CalculusFieldElement<T>> extends Object implements FieldDerivative<T,FieldDerivativeStructure<T>>
Class representing both the value and the differentials of a function.This class is similar to
DerivativeStructure
except function parameters and value can be anyCalculusFieldElement
.Instances of this class are guaranteed to be immutable.
- See Also:
DerivativeStructure
,FDSFactory
,DSCompiler
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description FieldDerivativeStructure<T>
abs()
absolute value.FieldDerivativeStructure<T>
acos()
Arc cosine operation.FieldDerivativeStructure<T>
acosh()
Inverse hyperbolic cosine operation.FieldDerivativeStructure<T>
add(double a)
'+' operator.FieldDerivativeStructure<T>
add(FieldDerivativeStructure<T> a)
Compute this + a.FieldDerivativeStructure<T>
add(T a)
'+' operator.FieldDerivativeStructure<T>
asin()
Arc sine operation.FieldDerivativeStructure<T>
asinh()
Inverse hyperbolic sine operation.FieldDerivativeStructure<T>
atan()
Arc tangent operation.FieldDerivativeStructure<T>
atan2(FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.FieldDerivativeStructure<T>
atanh()
Inverse hyperbolic tangent operation.FieldDerivativeStructure<T>
cbrt()
Cubic root.FieldDerivativeStructure<T>
ceil()
Get the smallest whole number larger than instance.FieldDerivativeStructure<T>
compose(double... f)
Compute composition of the instance by a univariate function.FieldDerivativeStructure<T>
compose(T... f)
Compute composition of the instance by a univariate function.FieldDerivativeStructure<T>
copySign(double sign)
Returns the instance with the sign of the argument.FieldDerivativeStructure<T>
copySign(FieldDerivativeStructure<T> sign)
Returns the instance with the sign of the argument.FieldDerivativeStructure<T>
copySign(T sign)
Returns the instance with the sign of the argument.FieldDerivativeStructure<T>
cos()
Cosine operation.FieldDerivativeStructure<T>
cosh()
Hyperbolic cosine operation.FieldDerivativeStructure<T>
differentiate(int varIndex, int differentiationOrder)
Differentiate w.r.t. one independent variable.FieldDerivativeStructure<T>
divide(double a)
'÷' operator.FieldDerivativeStructure<T>
divide(FieldDerivativeStructure<T> a)
Compute this ÷ a.FieldDerivativeStructure<T>
divide(T a)
'÷' operator.FieldDerivativeStructure<T>
exp()
Exponential.FieldDerivativeStructure<T>
expm1()
Exponential minus 1.FieldDerivativeStructure<T>
floor()
Get the largest whole number smaller than instance.T[]
getAllDerivatives()
Get all partial derivatives.int
getExponent()
Return the exponent of the instance value, removing the bias.FDSFactory<T>
getFactory()
Get the factory that built the instance.Field<FieldDerivativeStructure<T>>
getField()
Get theField
to which the instance belongs.int
getFreeParameters()
Get the number of free parameters.int
getOrder()
Get the derivation order.T
getPartialDerivative(int... orders)
Get a partial derivative.FieldDerivativeStructure<T>
getPi()
Get the Archimedes constant π.double
getReal()
Get the real value of the number.T
getValue()
Get the value part of the derivative structure.FieldDerivativeStructure<T>
hypot(FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.FieldDerivativeStructure<T>
integrate(int varIndex, int integrationOrder)
Integrate w.r.t. one independent variable.FieldDerivativeStructure<T>
linearCombination(double[] a, FieldDerivativeStructure<T>[] b)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(T[] a, FieldDerivativeStructure<T>[] b)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3)
Compute a linear combination.FieldDerivativeStructure<T>
linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4)
Compute a linear combination.FieldDerivativeStructure<T>
log()
Natural logarithm.FieldDerivativeStructure<T>
log10()
Base 10 logarithm.FieldDerivativeStructure<T>
log1p()
Shifted natural logarithm.FieldDerivativeStructure<T>
multiply(double a)
'×' operator.FieldDerivativeStructure<T>
multiply(int n)
Compute n × this.FieldDerivativeStructure<T>
multiply(FieldDerivativeStructure<T> a)
Compute this × a.FieldDerivativeStructure<T>
multiply(T a)
'×' operator.FieldDerivativeStructure<T>
negate()
Returns the additive inverse ofthis
element.FieldDerivativeStructure<T>
newInstance(double value)
Create an instance corresponding to a constant real value.FieldDerivativeStructure<T>
pow(double p)
Power operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>pow(double a, FieldDerivativeStructure<T> x)
Compute ax where a is a double and x aFieldDerivativeStructure
FieldDerivativeStructure<T>
pow(int n)
Integer power operation.FieldDerivativeStructure<T>
pow(FieldDerivativeStructure<T> e)
Power operation.FieldDerivativeStructure<T>
rebase(FieldDerivativeStructure<T>... p)
Rebase instance with respect to low level parameter functions.FieldDerivativeStructure<T>
reciprocal()
Returns the multiplicative inverse ofthis
element.FieldDerivativeStructure<T>
remainder(double a)
IEEE remainder operator.FieldDerivativeStructure<T>
remainder(FieldDerivativeStructure<T> a)
IEEE remainder operator.FieldDerivativeStructure<T>
remainder(T a)
IEEE remainder operator.FieldDerivativeStructure<T>
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.FieldDerivativeStructure<T>
rootN(int n)
Nth root.FieldDerivativeStructure<T>
scalb(int n)
Multiply the instance by a power of 2.FieldDerivativeStructure<T>
sign()
Compute the sign of the instance.FieldDerivativeStructure<T>
sin()
Sine operation.FieldSinCos<FieldDerivativeStructure<T>>
sinCos()
Combined Sine and Cosine operation.FieldDerivativeStructure<T>
sinh()
Hyperbolic sine operation.FieldSinhCosh<FieldDerivativeStructure<T>>
sinhCosh()
Combined hyperbolic sine and sosine operation.FieldDerivativeStructure<T>
sqrt()
Square root.FieldDerivativeStructure<T>
subtract(double a)
'-' operator.FieldDerivativeStructure<T>
subtract(FieldDerivativeStructure<T> a)
Compute this - a.FieldDerivativeStructure<T>
subtract(T a)
'-' operator.FieldDerivativeStructure<T>
tan()
Tangent operation.FieldDerivativeStructure<T>
tanh()
Hyperbolic tangent operation.T
taylor(double... delta)
Evaluate Taylor expansion of a derivative structure.T
taylor(T... delta)
Evaluate Taylor expansion of a derivative structure.FieldDerivativeStructure<T>
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPFieldDerivativeStructure<T>
toRadians()
Convert degrees to radians, with error of less than 0.5 ULPFieldDerivativeStructure<T>
ulp()
Compute least significant bit (Unit in Last Position) for a number.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Method Detail
-
newInstance
public FieldDerivativeStructure<T> newInstance(double value)
Create an instance corresponding to a constant real value.- Specified by:
newInstance
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
value
- constant real value- Returns:
- instance corresponding to a constant real value
-
getFactory
public FDSFactory<T> getFactory()
Get the factory that built the instance.- Returns:
- factory that built the instance
-
getFreeParameters
public int getFreeParameters()
Description copied from interface:FieldDerivative
Get the number of free parameters.- Specified by:
getFreeParameters
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>
- Returns:
- number of free parameters
-
getOrder
public int getOrder()
Description copied from interface:FieldDerivative
Get the derivation order.- Specified by:
getOrder
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>
- Returns:
- derivation order
-
getReal
public double getReal()
Get the real value of the number.- Specified by:
getReal
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- real value
-
getValue
public T getValue()
Get the value part of the derivative structure.- Specified by:
getValue
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>
- Returns:
- value part of the derivative structure
- See Also:
getPartialDerivative(int...)
-
getPartialDerivative
public T getPartialDerivative(int... orders) throws MathIllegalArgumentException
Get a partial derivative.- Specified by:
getPartialDerivative
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>
- Parameters:
orders
- derivation orders with respect to each variable (if all orders are 0, the value is returned)- Returns:
- partial derivative
- Throws:
MathIllegalArgumentException
- if the numbers of variables does not match the instance- See Also:
FieldDerivative.getValue()
-
getAllDerivatives
public T[] getAllDerivatives()
Get all partial derivatives.- Returns:
- a fresh copy of partial derivatives, in an array sorted according to
DSCompiler.getPartialDerivativeIndex(int...)
-
add
public FieldDerivativeStructure<T> add(T a)
'+' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldDerivativeStructure<T> add(double a)
'+' operator.- Specified by:
add
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldDerivativeStructure<T> add(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
Compute this + a.- Specified by:
add
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to add- Returns:
- a new element representing this + a
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
subtract
public FieldDerivativeStructure<T> subtract(T a)
'-' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldDerivativeStructure<T> subtract(double a)
'-' operator.- Specified by:
subtract
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldDerivativeStructure<T> subtract(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
Compute this - a.- Specified by:
subtract
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to subtract- Returns:
- a new element representing this - a
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
multiply
public FieldDerivativeStructure<T> multiply(T a)
'×' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldDerivativeStructure<T> multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiply
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- Number of timesthis
must be added to itself.- Returns:
- A new element representing n × this.
-
multiply
public FieldDerivativeStructure<T> multiply(double a)
'×' operator.- Specified by:
multiply
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldDerivativeStructure<T> multiply(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
Compute this × a.- Specified by:
multiply
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to multiply- Returns:
- a new element representing this × a
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
divide
public FieldDerivativeStructure<T> divide(T a)
'÷' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldDerivativeStructure<T> divide(double a)
'÷' operator.- Specified by:
divide
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldDerivativeStructure<T> divide(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
Compute this ÷ a.- Specified by:
divide
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to divide by- Returns:
- a new element representing this ÷ a
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
remainder
public FieldDerivativeStructure<T> remainder(T a)
IEEE remainder operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a (the even integer is chosen for n if this/a is halfway between two integers)
-
remainder
public FieldDerivativeStructure<T> remainder(double a)
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public FieldDerivativeStructure<T> remainder(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
negate
public FieldDerivativeStructure<T> negate()
Returns the additive inverse ofthis
element.- Specified by:
negate
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- the opposite of
this
.
-
abs
public FieldDerivativeStructure<T> abs()
absolute value.Just another name for
CalculusFieldElement.norm()
- Specified by:
abs
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- abs(this)
-
ceil
public FieldDerivativeStructure<T> ceil()
Get the smallest whole number larger than instance.- Specified by:
ceil
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- ceil(this)
-
floor
public FieldDerivativeStructure<T> floor()
Get the largest whole number smaller than instance.- Specified by:
floor
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- floor(this)
-
rint
public FieldDerivativeStructure<T> rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rint
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public FieldDerivativeStructure<T> sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
sign
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public FieldDerivativeStructure<T> copySign(T sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public FieldDerivativeStructure<T> copySign(double sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public FieldDerivativeStructure<T> copySign(FieldDerivativeStructure<T> sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
getExponent
public int getExponent()
Return the exponent of the instance value, removing the bias.For double numbers of the form 2x, the unbiased exponent is exactly x.
- Specified by:
getExponent
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- exponent for instance in IEEE754 representation, without bias
-
scalb
public FieldDerivativeStructure<T> scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalb
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- power of 2- Returns:
- this × 2n
-
ulp
public FieldDerivativeStructure<T> ulp()
Compute least significant bit (Unit in Last Position) for a number.The
ulp
function is a step function, hence all its derivatives are 0.- Specified by:
ulp
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- ulp(this)
- Since:
- 2.0
-
hypot
public FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypot
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
y
- a value- Returns:
- sqrt(this2 +y2)
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
hypot
public static <T extends CalculusFieldElement<T>> FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Type Parameters:
T
- the type of the field elements- Parameters:
x
- a valuey
- a value- Returns:
- sqrt(x2 +y2)
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
compose
@SafeVarargs public final FieldDerivativeStructure<T> compose(T... f) throws MathIllegalArgumentException
Compute composition of the instance by a univariate function.- Parameters:
f
- array of value and derivatives of the function at the current point (i.e. [f(getValue()
), f'(getValue()
), f''(getValue()
)...]).- Returns:
- f(this)
- Throws:
MathIllegalArgumentException
- if the number of derivatives in the array is not equal toorder
+ 1
-
compose
public FieldDerivativeStructure<T> compose(double... f) throws MathIllegalArgumentException
Compute composition of the instance by a univariate function.- Parameters:
f
- array of value and derivatives of the function at the current point (i.e. [f(getValue()
), f'(getValue()
), f''(getValue()
)...]).- Returns:
- f(this)
- Throws:
MathIllegalArgumentException
- if the number of derivatives in the array is not equal toorder
+ 1
-
reciprocal
public FieldDerivativeStructure<T> reciprocal()
Returns the multiplicative inverse ofthis
element.- Specified by:
reciprocal
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Specified by:
reciprocal
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- the inverse of
this
.
-
sqrt
public FieldDerivativeStructure<T> sqrt()
Square root.- Specified by:
sqrt
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- square root of the instance
-
cbrt
public FieldDerivativeStructure<T> cbrt()
Cubic root.- Specified by:
cbrt
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- cubic root of the instance
-
rootN
public FieldDerivativeStructure<T> rootN(int n)
Nth root.- Specified by:
rootN
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- order of the root- Returns:
- nth root of the instance
-
getField
public Field<FieldDerivativeStructure<T>> getField()
Get theField
to which the instance belongs.- Specified by:
getField
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Returns:
Field
to which the instance belongs
-
pow
public static <T extends CalculusFieldElement<T>> FieldDerivativeStructure<T> pow(double a, FieldDerivativeStructure<T> x)
Compute ax where a is a double and x aFieldDerivativeStructure
- Type Parameters:
T
- the type of the field elements- Parameters:
a
- number to exponentiatex
- power to apply- Returns:
- ax
-
pow
public FieldDerivativeStructure<T> pow(double p)
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
p
- power to apply- Returns:
- thisp
-
pow
public FieldDerivativeStructure<T> pow(int n)
Integer power operation.- Specified by:
pow
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- power to apply- Returns:
- thisn
-
pow
public FieldDerivativeStructure<T> pow(FieldDerivativeStructure<T> e) throws MathIllegalArgumentException
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
e
- exponent- Returns:
- thise
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
exp
public FieldDerivativeStructure<T> exp()
Exponential.- Specified by:
exp
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- exponential of the instance
-
expm1
public FieldDerivativeStructure<T> expm1()
Exponential minus 1.- Specified by:
expm1
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- exponential minus one of the instance
-
log
public FieldDerivativeStructure<T> log()
Natural logarithm.- Specified by:
log
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- logarithm of the instance
-
log1p
public FieldDerivativeStructure<T> log1p()
Shifted natural logarithm.- Specified by:
log1p
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- logarithm of one plus the instance
-
log10
public FieldDerivativeStructure<T> log10()
Base 10 logarithm.- Specified by:
log10
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- base 10 logarithm of the instance
-
cos
public FieldDerivativeStructure<T> cos()
Cosine operation.- Specified by:
cos
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- cos(this)
-
sin
public FieldDerivativeStructure<T> sin()
Sine operation.- Specified by:
sin
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- sin(this)
-
sinCos
public FieldSinCos<FieldDerivativeStructure<T>> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCos
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- [sin(this), cos(this)]
-
tan
public FieldDerivativeStructure<T> tan()
Tangent operation.- Specified by:
tan
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- tan(this)
-
acos
public FieldDerivativeStructure<T> acos()
Arc cosine operation.- Specified by:
acos
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- acos(this)
-
asin
public FieldDerivativeStructure<T> asin()
Arc sine operation.- Specified by:
asin
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- asin(this)
-
atan
public FieldDerivativeStructure<T> atan()
Arc tangent operation.- Specified by:
atan
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- atan(this)
-
atan2
public FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2
, this method computesatan2(this, x)
, i.e. the instance represents they
argument and thex
argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2
two-arguments arc tangent and putsx
as its first argument.- Specified by:
atan2
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
x
- second argument of the arc tangent- Returns:
- atan2(this, x)
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders are inconsistent
-
atan2
public static <T extends CalculusFieldElement<T>> FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
Two arguments arc tangent operation.- Type Parameters:
T
- the type of the field elements- Parameters:
y
- first argument of the arc tangentx
- second argument of the arc tangent- Returns:
- atan2(y, x)
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
cosh
public FieldDerivativeStructure<T> cosh()
Hyperbolic cosine operation.- Specified by:
cosh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- cosh(this)
-
sinh
public FieldDerivativeStructure<T> sinh()
Hyperbolic sine operation.- Specified by:
sinh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<FieldDerivativeStructure<T>> sinhCosh()
Combined hyperbolic sine and sosine operation.- Specified by:
sinhCosh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- [sinh(this), cosh(this)]
-
tanh
public FieldDerivativeStructure<T> tanh()
Hyperbolic tangent operation.- Specified by:
tanh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- tanh(this)
-
acosh
public FieldDerivativeStructure<T> acosh()
Inverse hyperbolic cosine operation.- Specified by:
acosh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- acosh(this)
-
asinh
public FieldDerivativeStructure<T> asinh()
Inverse hyperbolic sine operation.- Specified by:
asinh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- asin(this)
-
atanh
public FieldDerivativeStructure<T> atanh()
Inverse hyperbolic tangent operation.- Specified by:
atanh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- atanh(this)
-
toDegrees
public FieldDerivativeStructure<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegrees
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- instance converted into degrees
-
toRadians
public FieldDerivativeStructure<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadians
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- instance converted into radians
-
integrate
public FieldDerivativeStructure<T> integrate(int varIndex, int integrationOrder)
Integrate w.r.t. one independent variable.Rigorously, if the derivatives of a function are known up to order N, the ones of its M-th integral w.r.t. a given variable (seen as a function itself) are actually known up to order N+M. However, this method still casts the output as a DerivativeStructure of order N. The integration constants are systematically set to zero.
- Parameters:
varIndex
- Index of independent variable w.r.t. which integration is done.integrationOrder
- Number of times the integration operator must be applied. If non-positive, call the differentiation operator.- Returns:
- DerivativeStructure on which integration operator has been applied a certain number of times.
- Since:
- 2.2
-
differentiate
public FieldDerivativeStructure<T> differentiate(int varIndex, int differentiationOrder)
Differentiate w.r.t. one independent variable.Rigorously, if the derivatives of a function are known up to order N, the ones of its M-th derivative w.r.t. a given variable (seen as a function itself) are only known up to order N-M. However, this method still casts the output as a DerivativeStructure of order N with zeroes for the higher order terms.
- Parameters:
varIndex
- Index of independent variable w.r.t. which differentiation is done.differentiationOrder
- Number of times the differentiation operator must be applied. If non-positive, call the integration operator instead.- Returns:
- DerivativeStructure on which differentiation operator has been applied a certain number of times
- Since:
- 2.2
-
taylor
@SafeVarargs public final T taylor(T... delta) throws MathRuntimeException
Evaluate Taylor expansion of a derivative structure.- Parameters:
delta
- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
- Throws:
MathRuntimeException
- if factorials becomes too large
-
taylor
public T taylor(double... delta) throws MathRuntimeException
Evaluate Taylor expansion of a derivative structure.- Parameters:
delta
- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
- Throws:
MathRuntimeException
- if factorials becomes too large
-
rebase
public FieldDerivativeStructure<T> rebase(FieldDerivativeStructure<T>... p)
Rebase instance with respect to low level parameter functions.The instance is considered to be a function of
\( \begin{align} p_0 & = p_0(q_0, q_1, \ldots q_{m-1})\\ p_1 & = p_1(q_0, q_1, \ldots q_{m-1})\\ p_{n-1} & = p_{n-1}(q_0, q_1, \ldots q_{m-1}) \end{align}\)n free parameters
up to ordero
\(f(p_0, p_1, \ldots p_{n-1})\). Itspartial derivatives
are therefore \(f, \frac{\partial f}{\partial p_0}, \frac{\partial f}{\partial p_1}, \ldots \frac{\partial^2 f}{\partial p_0^2}, \frac{\partial^2 f}{\partial p_0 p_1}, \ldots \frac{\partial^o f}{\partial p_{n-1}^o}\). The free parameters \(p_0, p_1, \ldots p_{n-1}\) are considered to be functions of \(m\) lower level other parameters \(q_0, q_1, \ldots q_{m-1}\).This method compute the composition of the partial derivatives of \(f\) and the partial derivatives of \(p_0, p_1, \ldots p_{n-1}\), i.e. the
partial derivatives
of the value returned will be \(f, \frac{\partial f}{\partial q_0}, \frac{\partial f}{\partial q_1}, \ldots \frac{\partial^2 f}{\partial q_0^2}, \frac{\partial^2 f}{\partial q_0 q_1}, \ldots \frac{\partial^o f}{\partial q_{m-1}^o}\).The number of parameters must match
getFreeParameters()
and the derivation orders of the instance and parameters must also match.- Parameters:
p
- base parameters with respect to which partial derivatives were computed in the instance- Returns:
- derivative structure with partial derivatives computed with respect to the lower level parameters used in the \(p_i\)
- Since:
- 2.2
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(T[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
Compute a linear combination.- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(double[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders are inconsistent- See Also:
linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure)
,linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders are inconsistent- See Also:
linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure)
,linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the third termb4
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders are inconsistent- See Also:
linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure)
,linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure)
-
linearCombination
public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders do not match- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public FieldDerivativeStructure<T> getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPi
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- Archimedes constant π
-
-