Class FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.FieldUnivariateDerivative<T,FieldUnivariateDerivative1<T>>
-
- org.hipparchus.analysis.differentiation.FieldUnivariateDerivative1<T>
-
- Type Parameters:
T
- the type of the function parameters and value
- All Implemented Interfaces:
FieldDerivative<T,FieldUnivariateDerivative1<T>>
,CalculusFieldElement<FieldUnivariateDerivative1<T>>
,FieldElement<FieldUnivariateDerivative1<T>>
public class FieldUnivariateDerivative1<T extends CalculusFieldElement<T>> extends FieldUnivariateDerivative<T,FieldUnivariateDerivative1<T>>
Class representing both the value and the differentials of a function.This class is a stripped-down version of
FieldDerivativeStructure
with only onefree parameter
andderivation order
also limited to one. It should have less overhead thanFieldDerivativeStructure
in its domain.This class is an implementation of Rall's numbers. Rall's numbers are an extension to the real numbers used throughout mathematical expressions; they hold the derivative together with the value of a function.
FieldUnivariateDerivative1
instances can be used directly thanks to the arithmetic operators to the mathematical functions provided as methods by this class (+, -, *, /, %, sin, cos ...).Implementing complex expressions by hand using these classes is a tedious and error-prone task but has the advantage of having no limitation on the derivation order despite not requiring users to compute the derivatives by themselves.
Instances of this class are guaranteed to be immutable.
- Since:
- 1.7
- See Also:
DerivativeStructure
,UnivariateDerivative1
,UnivariateDerivative2
,Gradient
,FieldDerivativeStructure
,FieldUnivariateDerivative2
,FieldGradient
-
-
Constructor Summary
Constructors Constructor Description FieldUnivariateDerivative1(FieldDerivativeStructure<T> ds)
Build an instance from aDerivativeStructure
.FieldUnivariateDerivative1(T f0, T f1)
Build an instance with values and derivative.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description FieldUnivariateDerivative1<T>
abs()
absolute value.FieldUnivariateDerivative1<T>
acos()
Arc cosine operation.FieldUnivariateDerivative1<T>
acosh()
Inverse hyperbolic cosine operation.FieldUnivariateDerivative1<T>
add(double a)
'+' operator.FieldUnivariateDerivative1<T>
add(FieldUnivariateDerivative1<T> a)
Compute this + a.FieldUnivariateDerivative1<T>
add(T a)
'+' operator.FieldUnivariateDerivative1<T>
asin()
Arc sine operation.FieldUnivariateDerivative1<T>
asinh()
Inverse hyperbolic sine operation.FieldUnivariateDerivative1<T>
atan()
Arc tangent operation.FieldUnivariateDerivative1<T>
atan2(FieldUnivariateDerivative1<T> x)
Two arguments arc tangent operation.FieldUnivariateDerivative1<T>
atanh()
Inverse hyperbolic tangent operation.FieldUnivariateDerivative1<T>
cbrt()
Cubic root.FieldUnivariateDerivative1<T>
ceil()
Get the smallest whole number larger than instance.FieldUnivariateDerivative1<T>
compose(T g0, T g1)
Compute composition of the instance by a function.FieldUnivariateDerivative1<T>
copySign(double sign)
Returns the instance with the sign of the argument.FieldUnivariateDerivative1<T>
copySign(FieldUnivariateDerivative1<T> sign)
Returns the instance with the sign of the argument.FieldUnivariateDerivative1<T>
copySign(T sign)
Returns the instance with the sign of the argument.FieldUnivariateDerivative1<T>
cos()
Cosine operation.FieldUnivariateDerivative1<T>
cosh()
Hyperbolic cosine operation.FieldUnivariateDerivative1<T>
divide(double a)
'÷' operator.FieldUnivariateDerivative1<T>
divide(FieldUnivariateDerivative1<T> a)
Compute this ÷ a.FieldUnivariateDerivative1<T>
divide(T a)
'÷' operator.boolean
equals(Object other)
Test for the equality of two univariate derivatives.FieldUnivariateDerivative1<T>
exp()
Exponential.FieldUnivariateDerivative1<T>
expm1()
Exponential minus 1.FieldUnivariateDerivative1<T>
floor()
Get the largest whole number smaller than instance.T
getDerivative(int n)
Get a derivative from the univariate derivative.int
getExponent()
Return the exponent of the instance, removing the bias.FieldUnivariateDerivative1Field<T>
getField()
Get theField
to which the instance belongs.T
getFirstDerivative()
Get the first derivative.int
getOrder()
Get the derivation order.FieldUnivariateDerivative1<T>
getPi()
Get the Archimedes constant π.double
getReal()
Get the real value of the number.T
getValue()
Get the value part of the univariate derivative.Field<T>
getValueField()
Get theField
the value and parameters of the function belongs to.int
hashCode()
Get a hashCode for the univariate derivative.FieldUnivariateDerivative1<T>
hypot(FieldUnivariateDerivative1<T> y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldUnivariateDerivative1<T>
linearCombination(double[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3, double a4, FieldUnivariateDerivative1<T> b4)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(FieldUnivariateDerivative1<T>[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3, FieldUnivariateDerivative1<T> a4, FieldUnivariateDerivative1<T> b4)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(T[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.FieldUnivariateDerivative1<T>
linearCombination(T a1, FieldUnivariateDerivative1<T> b1, T a2, FieldUnivariateDerivative1<T> b2, T a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.FieldUnivariateDerivative1<T>
log()
Natural logarithm.FieldUnivariateDerivative1<T>
log10()
Base 10 logarithm.FieldUnivariateDerivative1<T>
log1p()
Shifted natural logarithm.FieldUnivariateDerivative1<T>
multiply(double a)
'×' operator.FieldUnivariateDerivative1<T>
multiply(int n)
Compute n × this.FieldUnivariateDerivative1<T>
multiply(FieldUnivariateDerivative1<T> a)
Compute this × a.FieldUnivariateDerivative1<T>
multiply(T a)
'×' operator.FieldUnivariateDerivative1<T>
negate()
Returns the additive inverse ofthis
element.FieldUnivariateDerivative1<T>
newInstance(double value)
Create an instance corresponding to a constant real value.FieldUnivariateDerivative1<T>
pow(double p)
Power operation.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1<T>pow(double a, FieldUnivariateDerivative1<T> x)
Compute ax where a is a double and x aFieldUnivariateDerivative1
FieldUnivariateDerivative1<T>
pow(int n)
Integer power operation.FieldUnivariateDerivative1<T>
pow(FieldUnivariateDerivative1<T> e)
Power operation.FieldUnivariateDerivative1<T>
reciprocal()
Returns the multiplicative inverse ofthis
element.FieldUnivariateDerivative1<T>
remainder(double a)
IEEE remainder operator.FieldUnivariateDerivative1<T>
remainder(FieldUnivariateDerivative1<T> a)
IEEE remainder operator.FieldUnivariateDerivative1<T>
remainder(T a)
IEEE remainder operator.FieldUnivariateDerivative1<T>
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.FieldUnivariateDerivative1<T>
rootN(int n)
Nth root.FieldUnivariateDerivative1<T>
scalb(int n)
Multiply the instance by a power of 2.FieldUnivariateDerivative1<T>
sign()
Compute the sign of the instance.FieldUnivariateDerivative1<T>
sin()
Sine operation.FieldSinCos<FieldUnivariateDerivative1<T>>
sinCos()
Combined Sine and Cosine operation.FieldUnivariateDerivative1<T>
sinh()
Hyperbolic sine operation.FieldSinhCosh<FieldUnivariateDerivative1<T>>
sinhCosh()
Combined hyperbolic sine and sosine operation.FieldUnivariateDerivative1<T>
sqrt()
Square root.FieldUnivariateDerivative1<T>
subtract(double a)
'-' operator.FieldUnivariateDerivative1<T>
subtract(FieldUnivariateDerivative1<T> a)
Compute this - a.FieldUnivariateDerivative1<T>
subtract(T a)
'-' operator.FieldUnivariateDerivative1<T>
tan()
Tangent operation.FieldUnivariateDerivative1<T>
tanh()
Hyperbolic tangent operation.T
taylor(double delta)
Evaluate Taylor expansion of a univariate derivative.T
taylor(T delta)
Evaluate Taylor expansion of a univariate derivative.FieldUnivariateDerivative1<T>
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPFieldDerivativeStructure<T>
toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure
.FieldUnivariateDerivative1<T>
toRadians()
Convert degrees to radians, with error of less than 0.5 ULPFieldUnivariateDerivative1<T>
ulp()
Compute least significant bit (Unit in Last Position) for a number.-
Methods inherited from class org.hipparchus.analysis.differentiation.FieldUnivariateDerivative
getFreeParameters, getPartialDerivative
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Constructor Detail
-
FieldUnivariateDerivative1
public FieldUnivariateDerivative1(T f0, T f1)
Build an instance with values and derivative.- Parameters:
f0
- value of the functionf1
- first derivative of the function
-
FieldUnivariateDerivative1
public FieldUnivariateDerivative1(FieldDerivativeStructure<T> ds) throws MathIllegalArgumentException
Build an instance from aDerivativeStructure
.- Parameters:
ds
- derivative structure- Throws:
MathIllegalArgumentException
- if eitherds
parameters is not 1 ords
order is not 1
-
-
Method Detail
-
newInstance
public FieldUnivariateDerivative1<T> newInstance(double value)
Create an instance corresponding to a constant real value.- Parameters:
value
- constant real value- Returns:
- instance corresponding to a constant real value
-
getReal
public double getReal()
Get the real value of the number.- Returns:
- real value
-
getValue
public T getValue()
Get the value part of the univariate derivative.- Returns:
- value part of the univariate derivative
-
getDerivative
public T getDerivative(int n)
Get a derivative from the univariate derivative.- Specified by:
getDerivative
in classFieldUnivariateDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>
- Parameters:
n
- derivation order (must be between 0 andgetOrder()
, both inclusive)- Returns:
- nth derivative, or
NaN
if n is either negative or strictly larger thangetOrder()
-
getOrder
public int getOrder()
Get the derivation order.- Returns:
- derivation order
-
getFirstDerivative
public T getFirstDerivative()
Get the first derivative.- Returns:
- first derivative
- See Also:
getValue()
-
getValueField
public Field<T> getValueField()
Get theField
the value and parameters of the function belongs to.- Returns:
Field
the value and parameters of the function belongs to
-
toDerivativeStructure
public FieldDerivativeStructure<T> toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure
.- Specified by:
toDerivativeStructure
in classFieldUnivariateDerivative<T extends CalculusFieldElement<T>,FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>>
- Returns:
- derivative structure with same value and derivative as the instance
-
add
public FieldUnivariateDerivative1<T> add(T a)
'+' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldUnivariateDerivative1<T> add(double a)
'+' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldUnivariateDerivative1<T> add(FieldUnivariateDerivative1<T> a)
Compute this + a.- Parameters:
a
- element to add- Returns:
- a new element representing this + a
-
subtract
public FieldUnivariateDerivative1<T> subtract(T a)
'-' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldUnivariateDerivative1<T> subtract(double a)
'-' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldUnivariateDerivative1<T> subtract(FieldUnivariateDerivative1<T> a)
Compute this - a.- Parameters:
a
- element to subtract- Returns:
- a new element representing this - a
-
multiply
public FieldUnivariateDerivative1<T> multiply(T a)
'×' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldUnivariateDerivative1<T> multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Parameters:
n
- Number of timesthis
must be added to itself.- Returns:
- A new element representing n × this.
-
multiply
public FieldUnivariateDerivative1<T> multiply(double a)
'×' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldUnivariateDerivative1<T> multiply(FieldUnivariateDerivative1<T> a)
Compute this × a.- Parameters:
a
- element to multiply- Returns:
- a new element representing this × a
-
divide
public FieldUnivariateDerivative1<T> divide(T a)
'÷' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldUnivariateDerivative1<T> divide(double a)
'÷' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldUnivariateDerivative1<T> divide(FieldUnivariateDerivative1<T> a)
Compute this ÷ a.- Parameters:
a
- element to divide by- Returns:
- a new element representing this ÷ a
-
remainder
public FieldUnivariateDerivative1<T> remainder(T a)
IEEE remainder operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a (the even integer is chosen for n if this/a is halfway between two integers)
-
remainder
public FieldUnivariateDerivative1<T> remainder(double a)
IEEE remainder operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public FieldUnivariateDerivative1<T> remainder(FieldUnivariateDerivative1<T> a)
IEEE remainder operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
negate
public FieldUnivariateDerivative1<T> negate()
Returns the additive inverse ofthis
element.- Returns:
- the opposite of
this
.
-
abs
public FieldUnivariateDerivative1<T> abs()
absolute value.Just another name for
CalculusFieldElement.norm()
- Returns:
- abs(this)
-
ceil
public FieldUnivariateDerivative1<T> ceil()
Get the smallest whole number larger than instance.- Returns:
- ceil(this)
-
floor
public FieldUnivariateDerivative1<T> floor()
Get the largest whole number smaller than instance.- Returns:
- floor(this)
-
rint
public FieldUnivariateDerivative1<T> rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public FieldUnivariateDerivative1<T> sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public FieldUnivariateDerivative1<T> copySign(T sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public FieldUnivariateDerivative1<T> copySign(FieldUnivariateDerivative1<T> sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public FieldUnivariateDerivative1<T> copySign(double sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
getExponent
public int getExponent()
Return the exponent of the instance, removing the bias.For double numbers of the form 2x, the unbiased exponent is exactly x.
- Returns:
- exponent for the instance, without bias
-
scalb
public FieldUnivariateDerivative1<T> scalb(int n)
Multiply the instance by a power of 2.- Parameters:
n
- power of 2- Returns:
- this × 2n
-
ulp
public FieldUnivariateDerivative1<T> ulp()
Compute least significant bit (Unit in Last Position) for a number.The
ulp
function is a step function, hence all its derivatives are 0.- Returns:
- ulp(this)
- Since:
- 2.0
-
hypot
public FieldUnivariateDerivative1<T> hypot(FieldUnivariateDerivative1<T> y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Parameters:
y
- a value- Returns:
- sqrt(this2 +y2)
-
reciprocal
public FieldUnivariateDerivative1<T> reciprocal()
Returns the multiplicative inverse ofthis
element.- Returns:
- the inverse of
this
.
-
compose
public FieldUnivariateDerivative1<T> compose(T g0, T g1)
Compute composition of the instance by a function.- Parameters:
g0
- value of the function at the current point (i.e. atg(getValue())
)g1
- first derivative of the function at the current point (i.e. atg'(getValue())
)- Returns:
- g(this)
-
sqrt
public FieldUnivariateDerivative1<T> sqrt()
Square root.- Returns:
- square root of the instance
-
cbrt
public FieldUnivariateDerivative1<T> cbrt()
Cubic root.- Returns:
- cubic root of the instance
-
rootN
public FieldUnivariateDerivative1<T> rootN(int n)
Nth root.- Parameters:
n
- order of the root- Returns:
- nth root of the instance
-
getField
public FieldUnivariateDerivative1Field<T> getField()
Get theField
to which the instance belongs.- Returns:
Field
to which the instance belongs
-
pow
public static <T extends CalculusFieldElement<T>> FieldUnivariateDerivative1<T> pow(double a, FieldUnivariateDerivative1<T> x)
Compute ax where a is a double and x aFieldUnivariateDerivative1
- Type Parameters:
T
- the type of the function parameters and value- Parameters:
a
- number to exponentiatex
- power to apply- Returns:
- ax
-
pow
public FieldUnivariateDerivative1<T> pow(double p)
Power operation.- Parameters:
p
- power to apply- Returns:
- thisp
-
pow
public FieldUnivariateDerivative1<T> pow(int n)
Integer power operation.- Parameters:
n
- power to apply- Returns:
- thisn
-
pow
public FieldUnivariateDerivative1<T> pow(FieldUnivariateDerivative1<T> e)
Power operation.- Parameters:
e
- exponent- Returns:
- thise
-
exp
public FieldUnivariateDerivative1<T> exp()
Exponential.- Returns:
- exponential of the instance
-
expm1
public FieldUnivariateDerivative1<T> expm1()
Exponential minus 1.- Returns:
- exponential minus one of the instance
-
log
public FieldUnivariateDerivative1<T> log()
Natural logarithm.- Returns:
- logarithm of the instance
-
log1p
public FieldUnivariateDerivative1<T> log1p()
Shifted natural logarithm.- Returns:
- logarithm of one plus the instance
-
log10
public FieldUnivariateDerivative1<T> log10()
Base 10 logarithm.- Returns:
- base 10 logarithm of the instance
-
cos
public FieldUnivariateDerivative1<T> cos()
Cosine operation.- Returns:
- cos(this)
-
sin
public FieldUnivariateDerivative1<T> sin()
Sine operation.- Returns:
- sin(this)
-
sinCos
public FieldSinCos<FieldUnivariateDerivative1<T>> sinCos()
Combined Sine and Cosine operation.- Returns:
- [sin(this), cos(this)]
-
tan
public FieldUnivariateDerivative1<T> tan()
Tangent operation.- Returns:
- tan(this)
-
acos
public FieldUnivariateDerivative1<T> acos()
Arc cosine operation.- Returns:
- acos(this)
-
asin
public FieldUnivariateDerivative1<T> asin()
Arc sine operation.- Returns:
- asin(this)
-
atan
public FieldUnivariateDerivative1<T> atan()
Arc tangent operation.- Returns:
- atan(this)
-
atan2
public FieldUnivariateDerivative1<T> atan2(FieldUnivariateDerivative1<T> x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2
, this method computesatan2(this, x)
, i.e. the instance represents they
argument and thex
argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2
two-arguments arc tangent and putsx
as its first argument.- Parameters:
x
- second argument of the arc tangent- Returns:
- atan2(this, x)
-
cosh
public FieldUnivariateDerivative1<T> cosh()
Hyperbolic cosine operation.- Returns:
- cosh(this)
-
sinh
public FieldUnivariateDerivative1<T> sinh()
Hyperbolic sine operation.- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<FieldUnivariateDerivative1<T>> sinhCosh()
Combined hyperbolic sine and sosine operation.- Returns:
- [sinh(this), cosh(this)]
-
tanh
public FieldUnivariateDerivative1<T> tanh()
Hyperbolic tangent operation.- Returns:
- tanh(this)
-
acosh
public FieldUnivariateDerivative1<T> acosh()
Inverse hyperbolic cosine operation.- Returns:
- acosh(this)
-
asinh
public FieldUnivariateDerivative1<T> asinh()
Inverse hyperbolic sine operation.- Returns:
- asin(this)
-
atanh
public FieldUnivariateDerivative1<T> atanh()
Inverse hyperbolic tangent operation.- Returns:
- atanh(this)
-
toDegrees
public FieldUnivariateDerivative1<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Returns:
- instance converted into degrees
-
toRadians
public FieldUnivariateDerivative1<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Returns:
- instance converted into radians
-
taylor
public T taylor(double delta)
Evaluate Taylor expansion of a univariate derivative.- Parameters:
delta
- parameter offset Δx- Returns:
- value of the Taylor expansion at x + Δx
-
taylor
public T taylor(T delta)
Evaluate Taylor expansion of a univariate derivative.- Parameters:
delta
- parameter offset Δx- Returns:
- value of the Taylor expansion at x + Δx
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(T[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T>[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double[] a, FieldUnivariateDerivative1<T>[] b)
Compute a linear combination.- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(T a1, FieldUnivariateDerivative1<T> b1, T a2, FieldUnivariateDerivative1<T> b2, T a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders are inconsistent- See Also:
linearCombination(double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1)
,linearCombination(double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1, double, FieldUnivariateDerivative1)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3, FieldUnivariateDerivative1<T> a4, FieldUnivariateDerivative1<T> b4)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldUnivariateDerivative1<T> linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3, double a4, FieldUnivariateDerivative1<T> b4)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public FieldUnivariateDerivative1<T> getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Returns:
- Archimedes constant π
-
equals
public boolean equals(Object other)
Test for the equality of two univariate derivatives.univariate derivatives are considered equal if they have the same derivatives.
-
-