Class FieldGradient<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.FieldGradient<T>
-
- Type Parameters:
T- the type of the function parameters and value
- All Implemented Interfaces:
FieldDerivative<T,FieldGradient<T>>,CalculusFieldElement<FieldGradient<T>>,FieldElement<FieldGradient<T>>
public class FieldGradient<T extends CalculusFieldElement<T>> extends Object implements FieldDerivative<T,FieldGradient<T>>
Class representing both the value and the differentials of a function.This class is a stripped-down version of
FieldDerivativeStructurewithderivation orderlimited to one. It should have less overhead thanFieldDerivativeStructurein its domain.This class is an implementation of Rall's numbers. Rall's numbers are an extension to the real numbers used throughout mathematical expressions; they hold the derivative together with the value of a function.
FieldGradientinstances can be used directly thanks to the arithmetic operators to the mathematical functions provided as methods by this class (+, -, *, /, %, sin, cos ...).Implementing complex expressions by hand using these classes is a tedious and error-prone task but has the advantage of having no limitation on the derivation order despite not requiring users to compute the derivatives by themselves.
Instances of this class are guaranteed to be immutable.
-
-
Constructor Summary
Constructors Constructor Description FieldGradient(FieldDerivativeStructure<T> ds)Build an instance from aDerivativeStructure.FieldGradient(T value, T... gradient)Build an instance with values and derivative.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description FieldGradient<T>abs()absolute value.FieldGradient<T>acos()Arc cosine operation.FieldGradient<T>acosh()Inverse hyperbolic cosine operation.FieldGradient<T>add(double a)'+' operator.FieldGradient<T>add(FieldGradient<T> a)Compute this + a.FieldGradient<T>add(T a)'+' operator.FieldGradient<T>asin()Arc sine operation.FieldGradient<T>asinh()Inverse hyperbolic sine operation.FieldGradient<T>atan()Arc tangent operation.FieldGradient<T>atan2(FieldGradient<T> x)Two arguments arc tangent operation.FieldGradient<T>atanh()Inverse hyperbolic tangent operation.FieldGradient<T>cbrt()Cubic root.FieldGradient<T>ceil()Get the smallest whole number larger than instance.FieldGradient<T>compose(T g0, T g1)Compute composition of the instance by a function.static <T extends CalculusFieldElement<T>>
FieldGradient<T>constant(int freeParameters, T value)Build an instance corresponding to a constant value.FieldGradient<T>copySign(double sign)Returns the instance with the sign of the argument.FieldGradient<T>copySign(FieldGradient<T> sign)Returns the instance with the sign of the argument.FieldGradient<T>copySign(T sign)Returns the instance with the sign of the argument.FieldGradient<T>cos()Cosine operation.FieldGradient<T>cosh()Hyperbolic cosine operation.FieldGradient<T>divide(double a)'÷' operator.FieldGradient<T>divide(FieldGradient<T> a)Compute this ÷ a.FieldGradient<T>divide(T a)'÷' operator.booleanequals(Object other)Test for the equality of two univariate derivatives.FieldGradient<T>exp()Exponential.FieldGradient<T>expm1()Exponential minus 1.FieldGradient<T>floor()Get the largest whole number smaller than instance.intgetExponent()Return the exponent of the instance, removing the bias.FieldGradientField<T>getField()Get theFieldto which the instance belongs.intgetFreeParameters()Get the number of free parameters.T[]getGradient()Get the gradient part of the function.intgetOrder()Get the derivation order.TgetPartialDerivative(int n)Get the partial derivative with respect to one parameter.TgetPartialDerivative(int... orders)Get a partial derivative.FieldGradient<T>getPi()Get the Archimedes constant π.doublegetReal()Get the real value of the number.TgetValue()Get the value part of the function.Field<T>getValueField()Get theFieldthe value and parameters of the function belongs to.inthashCode()Get a hashCode for the univariate derivative.FieldGradient<T>hypot(FieldGradient<T> y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldGradient<T>linearCombination(double[] a, FieldGradient<T>[] b)Compute a linear combination.FieldGradient<T>linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2)Compute a linear combination.FieldGradient<T>linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3)Compute a linear combination.FieldGradient<T>linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3, double a4, FieldGradient<T> b4)Compute a linear combination.FieldGradient<T>linearCombination(FieldGradient<T>[] a, FieldGradient<T>[] b)Compute a linear combination.FieldGradient<T>linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2)Compute a linear combination.FieldGradient<T>linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3)Compute a linear combination.FieldGradient<T>linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3, FieldGradient<T> a4, FieldGradient<T> b4)Compute a linear combination.FieldGradient<T>linearCombination(T[] a, FieldGradient<T>[] b)Compute a linear combination.FieldGradient<T>linearCombination(T a1, FieldGradient<T> b1, T a2, FieldGradient<T> b2, T a3, FieldGradient<T> b3)Compute a linear combination.FieldGradient<T>log()Natural logarithm.FieldGradient<T>log10()Base 10 logarithm.FieldGradient<T>log1p()Shifted natural logarithm.FieldGradient<T>multiply(double a)'×' operator.FieldGradient<T>multiply(int n)Compute n × this.FieldGradient<T>multiply(FieldGradient<T> a)Compute this × a.FieldGradient<T>multiply(T n)'×' operator.FieldGradient<T>negate()Returns the additive inverse ofthiselement.FieldGradient<T>newInstance(double c)Create an instance corresponding to a constant real value.FieldGradient<T>newInstance(T c)Create an instance corresponding to a constant real value.FieldGradient<T>pow(double p)Power operation.static <T extends CalculusFieldElement<T>>
FieldGradient<T>pow(double a, FieldGradient<T> x)Compute ax where a is a double and x aFieldGradientFieldGradient<T>pow(int n)Integer power operation.FieldGradient<T>pow(FieldGradient<T> e)Power operation.FieldGradient<T>reciprocal()Returns the multiplicative inverse ofthiselement.FieldGradient<T>remainder(double a)IEEE remainder operator.FieldGradient<T>remainder(FieldGradient<T> a)IEEE remainder operator.FieldGradient<T>remainder(T a)IEEE remainder operator.FieldGradient<T>rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.FieldGradient<T>rootN(int n)Nth root.FieldGradient<T>scalb(int n)Multiply the instance by a power of 2.FieldGradient<T>sign()Compute the sign of the instance.FieldGradient<T>sin()Sine operation.FieldSinCos<FieldGradient<T>>sinCos()Combined Sine and Cosine operation.FieldGradient<T>sinh()Hyperbolic sine operation.FieldSinhCosh<FieldGradient<T>>sinhCosh()Combined hyperbolic sine and sosine operation.FieldGradient<T>sqrt()Square root.FieldGradient<T>subtract(double a)'-' operator.FieldGradient<T>subtract(FieldGradient<T> a)Compute this - a.FieldGradient<T>subtract(T a)'-' operator.FieldGradient<T>tan()Tangent operation.FieldGradient<T>tanh()Hyperbolic tangent operation.Ttaylor(double... delta)Evaluate Taylor expansion of a gradient.Ttaylor(T... delta)Evaluate Taylor expansion of a gradient.FieldGradient<T>toDegrees()Convert radians to degrees, with error of less than 0.5 ULPFieldDerivativeStructure<T>toDerivativeStructure()Convert the instance to aFieldDerivativeStructure.FieldGradient<T>toRadians()Convert degrees to radians, with error of less than 0.5 ULPFieldGradient<T>ulp()Compute least significant bit (Unit in Last Position) for a number.static <T extends CalculusFieldElement<T>>
FieldGradient<T>variable(int freeParameters, int index, T value)Build aGradientrepresenting a variable.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Constructor Detail
-
FieldGradient
@SafeVarargs public FieldGradient(T value, T... gradient)
Build an instance with values and derivative.- Parameters:
value- value of the functiongradient- gradient of the function
-
FieldGradient
public FieldGradient(FieldDerivativeStructure<T> ds) throws MathIllegalArgumentException
Build an instance from aDerivativeStructure.- Parameters:
ds- derivative structure- Throws:
MathIllegalArgumentException- ifdsorder is not 1
-
-
Method Detail
-
constant
public static <T extends CalculusFieldElement<T>> FieldGradient<T> constant(int freeParameters, T value)
Build an instance corresponding to a constant value.- Type Parameters:
T- the type of the function parameters and value- Parameters:
freeParameters- number of free parameters (i.e. dimension of the gradient)value- constant value of the function- Returns:
- a
FieldGradientwith a constant value and all derivatives set to 0.0
-
variable
public static <T extends CalculusFieldElement<T>> FieldGradient<T> variable(int freeParameters, int index, T value)
Build aGradientrepresenting a variable.Instances built using this method are considered to be the free variables with respect to which differentials are computed. As such, their differential with respect to themselves is +1.
- Type Parameters:
T- the type of the function parameters and value- Parameters:
freeParameters- number of free parameters (i.e. dimension of the gradient)index- index of the variable (from 0 togetFreeParameters()- 1)value- value of the variable- Returns:
- a
FieldGradientwith a constant value and all derivatives set to 0.0 except the one atindexwhich will be set to 1.0
-
getValueField
public Field<T> getValueField()
Get theFieldthe value and parameters of the function belongs to.- Returns:
Fieldthe value and parameters of the function belongs to
-
newInstance
public FieldGradient<T> newInstance(double c)
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
c- constant real value- Returns:
- instance corresponding to a constant real value
-
newInstance
public FieldGradient<T> newInstance(T c)
Create an instance corresponding to a constant real value.The default implementation creates the instance by adding the value to
getField().getZero(). This is not optimal and does not work when called with a negative zero as the sign of zero is lost with the addition. The default implementation should therefore be overridden in concrete classes. The default implementation will be removed at the next major version.- Parameters:
c- constant real value- Returns:
- instance corresponding to a constant real value
-
getReal
public double getReal()
Get the real value of the number.- Specified by:
getRealin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- real value
-
getValue
public T getValue()
Get the value part of the function.- Specified by:
getValuein interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>- Returns:
- value part of the value of the function
-
getGradient
public T[] getGradient()
Get the gradient part of the function.- Returns:
- gradient part of the value of the function
-
getFreeParameters
public int getFreeParameters()
Get the number of free parameters.- Specified by:
getFreeParametersin interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>- Returns:
- number of free parameters
-
getOrder
public int getOrder()
Get the derivation order.- Specified by:
getOrderin interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>- Returns:
- derivation order
-
getPartialDerivative
public T getPartialDerivative(int... orders) throws MathIllegalArgumentException
Get a partial derivative.- Specified by:
getPartialDerivativein interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>- Parameters:
orders- derivation orders with respect to each variable (if all orders are 0, the value is returned)- Returns:
- partial derivative
- Throws:
MathIllegalArgumentException- if the numbers of variables does not match the instance- See Also:
FieldDerivative.getValue()
-
getPartialDerivative
public T getPartialDerivative(int n) throws MathIllegalArgumentException
Get the partial derivative with respect to one parameter.- Parameters:
n- index of the parameter (counting from 0)- Returns:
- partial derivative with respect to the nth parameter
- Throws:
MathIllegalArgumentException- if n is either negative or larger or equal togetFreeParameters()
-
toDerivativeStructure
public FieldDerivativeStructure<T> toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure.- Returns:
- derivative structure with same value and derivative as the instance
-
add
public FieldGradient<T> add(T a)
'+' operator.- Parameters:
a- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldGradient<T> add(double a)
'+' operator.- Specified by:
addin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldGradient<T> add(FieldGradient<T> a)
Compute this + a.- Specified by:
addin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
subtract
public FieldGradient<T> subtract(T a)
'-' operator.- Parameters:
a- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldGradient<T> subtract(double a)
'-' operator.- Specified by:
subtractin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldGradient<T> subtract(FieldGradient<T> a)
Compute this - a.- Specified by:
subtractin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
multiply
public FieldGradient<T> multiply(T n)
'×' operator.- Parameters:
n- right hand side parameter of the operator- Returns:
- this×n
-
multiply
public FieldGradient<T> multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
multiply
public FieldGradient<T> multiply(double a)
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldGradient<T> multiply(FieldGradient<T> a)
Compute this × a.- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
divide
public FieldGradient<T> divide(T a)
'÷' operator.- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldGradient<T> divide(double a)
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldGradient<T> divide(FieldGradient<T> a)
Compute this ÷ a.- Specified by:
dividein interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
remainder
public FieldGradient<T> remainder(T a)
IEEE remainder operator.- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a (the even integer is chosen for n if this/a is halfway between two integers)
-
remainder
public FieldGradient<T> remainder(double a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public FieldGradient<T> remainder(FieldGradient<T> a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
negate
public FieldGradient<T> negate()
Returns the additive inverse ofthiselement.- Specified by:
negatein interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- the opposite of
this.
-
abs
public FieldGradient<T> abs()
absolute value.Just another name for
CalculusFieldElement.norm()- Specified by:
absin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- abs(this)
-
ceil
public FieldGradient<T> ceil()
Get the smallest whole number larger than instance.- Specified by:
ceilin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- ceil(this)
-
floor
public FieldGradient<T> floor()
Get the largest whole number smaller than instance.- Specified by:
floorin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- floor(this)
-
rint
public FieldGradient<T> rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rintin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public FieldGradient<T> sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
signin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public FieldGradient<T> copySign(T sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public FieldGradient<T> copySign(FieldGradient<T> sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public FieldGradient<T> copySign(double sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
getExponent
public int getExponent()
Return the exponent of the instance, removing the bias.For double numbers of the form 2x, the unbiased exponent is exactly x.
- Specified by:
getExponentin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- exponent for the instance, without bias
-
scalb
public FieldGradient<T> scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power of 2- Returns:
- this × 2n
-
ulp
public FieldGradient<T> ulp()
Compute least significant bit (Unit in Last Position) for a number.The
ulpfunction is a step function, hence all its derivatives are 0.- Specified by:
ulpin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- ulp(this)
- Since:
- 2.0
-
hypot
public FieldGradient<T> hypot(FieldGradient<T> y)
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
reciprocal
public FieldGradient<T> reciprocal()
Returns the multiplicative inverse ofthiselement.- Specified by:
reciprocalin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
reciprocalin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- the inverse of
this.
-
compose
public FieldGradient<T> compose(T g0, T g1)
Compute composition of the instance by a function.- Parameters:
g0- value of the function at the current point (i.e. atg(getValue()))g1- first derivative of the function at the current point (i.e. atg'(getValue()))- Returns:
- g(this)
-
sqrt
public FieldGradient<T> sqrt()
Square root.- Specified by:
sqrtin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- square root of the instance
-
cbrt
public FieldGradient<T> cbrt()
Cubic root.- Specified by:
cbrtin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cubic root of the instance
-
rootN
public FieldGradient<T> rootN(int n)
Nth root.- Specified by:
rootNin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- order of the root- Returns:
- nth root of the instance
-
getField
public FieldGradientField<T> getField()
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
Fieldto which the instance belongs
-
pow
public static <T extends CalculusFieldElement<T>> FieldGradient<T> pow(double a, FieldGradient<T> x)
Compute ax where a is a double and x aFieldGradient- Type Parameters:
T- the type of the function parameters and value- Parameters:
a- number to exponentiatex- power to apply- Returns:
- ax
-
pow
public FieldGradient<T> pow(double p)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
public FieldGradient<T> pow(int n)
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power to apply- Returns:
- thisn
-
pow
public FieldGradient<T> pow(FieldGradient<T> e)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
e- exponent- Returns:
- thise
-
exp
public FieldGradient<T> exp()
Exponential.- Specified by:
expin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- exponential of the instance
-
expm1
public FieldGradient<T> expm1()
Exponential minus 1.- Specified by:
expm1in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- exponential minus one of the instance
-
log
public FieldGradient<T> log()
Natural logarithm.- Specified by:
login interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- logarithm of the instance
-
log1p
public FieldGradient<T> log1p()
Shifted natural logarithm.- Specified by:
log1pin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- logarithm of one plus the instance
-
log10
public FieldGradient<T> log10()
Base 10 logarithm.- Specified by:
log10in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- base 10 logarithm of the instance
-
cos
public FieldGradient<T> cos()
Cosine operation.- Specified by:
cosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cos(this)
-
sin
public FieldGradient<T> sin()
Sine operation.- Specified by:
sinin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- sin(this)
-
sinCos
public FieldSinCos<FieldGradient<T>> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- [sin(this), cos(this)]
-
tan
public FieldGradient<T> tan()
Tangent operation.- Specified by:
tanin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- tan(this)
-
acos
public FieldGradient<T> acos()
Arc cosine operation.- Specified by:
acosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- acos(this)
-
asin
public FieldGradient<T> asin()
Arc sine operation.- Specified by:
asinin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- asin(this)
-
atan
public FieldGradient<T> atan()
Arc tangent operation.- Specified by:
atanin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- atan(this)
-
atan2
public FieldGradient<T> atan2(FieldGradient<T> x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
cosh
public FieldGradient<T> cosh()
Hyperbolic cosine operation.- Specified by:
coshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cosh(this)
-
sinh
public FieldGradient<T> sinh()
Hyperbolic sine operation.- Specified by:
sinhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<FieldGradient<T>> sinhCosh()
Combined hyperbolic sine and sosine operation.- Specified by:
sinhCoshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- [sinh(this), cosh(this)]
-
tanh
public FieldGradient<T> tanh()
Hyperbolic tangent operation.- Specified by:
tanhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- tanh(this)
-
acosh
public FieldGradient<T> acosh()
Inverse hyperbolic cosine operation.- Specified by:
acoshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- acosh(this)
-
asinh
public FieldGradient<T> asinh()
Inverse hyperbolic sine operation.- Specified by:
asinhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- asin(this)
-
atanh
public FieldGradient<T> atanh()
Inverse hyperbolic tangent operation.- Specified by:
atanhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- atanh(this)
-
toDegrees
public FieldGradient<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into degrees
-
toRadians
public FieldGradient<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into radians
-
taylor
public T taylor(double... delta)
Evaluate Taylor expansion of a gradient.- Parameters:
delta- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
taylor
public T taylor(T... delta)
Evaluate Taylor expansion of a gradient.- Parameters:
delta- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T>[] a, FieldGradient<T>[] b)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public FieldGradient<T> linearCombination(T[] a, FieldGradient<T>[] b)
Compute a linear combination.- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public FieldGradient<T> linearCombination(double[] a, FieldGradient<T>[] b)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(T a1, FieldGradient<T> b1, T a2, FieldGradient<T> b2, T a3, FieldGradient<T> b3)
Compute a linear combination.- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Throws:
MathIllegalArgumentException- if number of free parameters or orders are inconsistent- See Also:
linearCombination(double, FieldGradient, double, FieldGradient),linearCombination(double, FieldGradient, double, FieldGradient, double, FieldGradient, double, FieldGradient)
-
linearCombination
public FieldGradient<T> linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3, FieldGradient<T> a4, FieldGradient<T> b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3, double a4, FieldGradient<T> b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public FieldGradient<T> getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- Archimedes constant π
-
equals
public boolean equals(Object other)
Test for the equality of two univariate derivatives.univariate derivatives are considered equal if they have the same derivatives.
-
-