Class SparseGradient
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.SparseGradient
-
- All Implemented Interfaces:
Serializable
,CalculusFieldElement<SparseGradient>
,FieldElement<SparseGradient>
public class SparseGradient extends Object implements CalculusFieldElement<SparseGradient>, Serializable
First derivative computation with large number of variables.This class plays a similar role to
DerivativeStructure
, with a focus on efficiency when dealing with large number of independent variables and most computation depend only on a few of them, and when only first derivative is desired. When these conditions are met, this class should be much faster thanDerivativeStructure
and use less memory.- See Also:
- Serialized Form
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description SparseGradient
abs()
absolute value.SparseGradient
acos()
Arc cosine operation.SparseGradient
acosh()
Inverse hyperbolic cosine operation.SparseGradient
add(double c)
'+' operator.SparseGradient
add(SparseGradient a)
Compute this + a.void
addInPlace(SparseGradient a)
Add in place.SparseGradient
asin()
Arc sine operation.SparseGradient
asinh()
Inverse hyperbolic sine operation.SparseGradient
atan()
Arc tangent operation.SparseGradient
atan2(SparseGradient x)
Two arguments arc tangent operation.static SparseGradient
atan2(SparseGradient y, SparseGradient x)
Two arguments arc tangent operation.SparseGradient
atanh()
Inverse hyperbolic tangent operation.SparseGradient
cbrt()
Cubic root.SparseGradient
ceil()
Get the smallest whole number larger than instance.SparseGradient
compose(double... f)
Compute composition of the instance by a univariate function.SparseGradient
copySign(double sign)
Returns the instance with the sign of the argument.SparseGradient
copySign(SparseGradient sign)
Returns the instance with the sign of the argument.SparseGradient
cos()
Cosine operation.SparseGradient
cosh()
Hyperbolic cosine operation.static SparseGradient
createConstant(double value)
Factory method creating a constant.static SparseGradient
createVariable(int idx, double value)
Factory method creating an independent variable.SparseGradient
divide(double c)
'÷' operator.SparseGradient
divide(SparseGradient a)
Compute this ÷ a.boolean
equals(Object other)
Test for the equality of two sparse gradients.SparseGradient
exp()
Exponential.SparseGradient
expm1()
Exponential minus 1.SparseGradient
floor()
Get the largest whole number smaller than instance.double
getDerivative(int index)
Get the derivative with respect to a particular index variable.Field<SparseGradient>
getField()
Get theField
to which the instance belongs.SparseGradient
getPi()
Get the Archimedes constant π.double
getReal()
Get the real value of the number.double
getValue()
Get the value of the function.int
hashCode()
Get a hashCode for the derivative structure.SparseGradient
hypot(SparseGradient y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static SparseGradient
hypot(SparseGradient x, SparseGradient y)
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.SparseGradient
linearCombination(double[] a, SparseGradient[] b)
Compute a linear combination.SparseGradient
linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2)
Compute a linear combination.SparseGradient
linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3)
Compute a linear combination.SparseGradient
linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3, double a4, SparseGradient b4)
Compute a linear combination.SparseGradient
linearCombination(SparseGradient[] a, SparseGradient[] b)
Compute a linear combination.SparseGradient
linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2)
Compute a linear combination.SparseGradient
linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3)
Compute a linear combination.SparseGradient
linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3, SparseGradient a4, SparseGradient b4)
Compute a linear combination.SparseGradient
log()
Natural logarithm.SparseGradient
log10()
Base 10 logarithm.SparseGradient
log1p()
Shifted natural logarithm.SparseGradient
multiply(double c)
'×' operator.SparseGradient
multiply(int n)
Compute n × this.SparseGradient
multiply(SparseGradient a)
Compute this × a.void
multiplyInPlace(SparseGradient a)
Multiply in place.SparseGradient
negate()
Returns the additive inverse ofthis
element.SparseGradient
newInstance(double v)
Create an instance corresponding to a constant real value.int
numVars()
Find the number of variables.SparseGradient
pow(double p)
Power operation.static SparseGradient
pow(double a, SparseGradient x)
Compute ax where a is a double and x aSparseGradient
SparseGradient
pow(int n)
Integer power operation.SparseGradient
pow(SparseGradient e)
Power operation.SparseGradient
reciprocal()
Returns the multiplicative inverse ofthis
element.SparseGradient
remainder(double a)
IEEE remainder operator.SparseGradient
remainder(SparseGradient a)
IEEE remainder operator.SparseGradient
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.SparseGradient
rootN(int n)
Nth root.SparseGradient
scalb(int n)
Multiply the instance by a power of 2.SparseGradient
sign()
Compute the sign of the instance.SparseGradient
sin()
Sine operation.FieldSinCos<SparseGradient>
sinCos()
Combined Sine and Cosine operation.SparseGradient
sinh()
Hyperbolic sine operation.FieldSinhCosh<SparseGradient>
sinhCosh()
Combined hyperbolic sine and sosine operation.SparseGradient
sqrt()
Square root.SparseGradient
subtract(double c)
'-' operator.SparseGradient
subtract(SparseGradient a)
Compute this - a.SparseGradient
tan()
Tangent operation.SparseGradient
tanh()
Hyperbolic tangent operation.double
taylor(double... delta)
Evaluate Taylor expansion of a sparse gradient.SparseGradient
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPSparseGradient
toRadians()
Convert degrees to radians, with error of less than 0.5 ULPSparseGradient
ulp()
Compute least significant bit (Unit in Last Position) for a number.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Method Detail
-
newInstance
public SparseGradient newInstance(double v)
Create an instance corresponding to a constant real value.- Specified by:
newInstance
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
v
- constant real value- Returns:
- instance corresponding to a constant real value
-
createConstant
public static SparseGradient createConstant(double value)
Factory method creating a constant.- Parameters:
value
- value of the constant- Returns:
- a new instance
-
createVariable
public static SparseGradient createVariable(int idx, double value)
Factory method creating an independent variable.- Parameters:
idx
- index of the variablevalue
- value of the variable- Returns:
- a new instance
-
numVars
public int numVars()
Find the number of variables.- Returns:
- number of variables
-
getDerivative
public double getDerivative(int index)
Get the derivative with respect to a particular index variable.- Parameters:
index
- index to differentiate with.- Returns:
- derivative with respect to a particular index variable
-
getValue
public double getValue()
Get the value of the function.- Returns:
- value of the function.
-
getReal
public double getReal()
Get the real value of the number.- Specified by:
getReal
in interfaceFieldElement<SparseGradient>
- Returns:
- real value
-
add
public SparseGradient add(SparseGradient a)
Compute this + a.- Specified by:
add
in interfaceFieldElement<SparseGradient>
- Parameters:
a
- element to add- Returns:
- a new element representing this + a
-
addInPlace
public void addInPlace(SparseGradient a)
Add in place.This method is designed to be faster when used multiple times in a loop.
The instance is changed here, in order to not change the instance the
add(SparseGradient)
method should be used.- Parameters:
a
- instance to add
-
add
public SparseGradient add(double c)
'+' operator.- Specified by:
add
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
c
- right hand side parameter of the operator- Returns:
- this+a
-
subtract
public SparseGradient subtract(SparseGradient a)
Compute this - a.- Specified by:
subtract
in interfaceFieldElement<SparseGradient>
- Parameters:
a
- element to subtract- Returns:
- a new element representing this - a
-
subtract
public SparseGradient subtract(double c)
'-' operator.- Specified by:
subtract
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
c
- right hand side parameter of the operator- Returns:
- this-a
-
multiply
public SparseGradient multiply(SparseGradient a)
Compute this × a.- Specified by:
multiply
in interfaceFieldElement<SparseGradient>
- Parameters:
a
- element to multiply- Returns:
- a new element representing this × a
-
multiplyInPlace
public void multiplyInPlace(SparseGradient a)
Multiply in place.This method is designed to be faster when used multiple times in a loop.
The instance is changed here, in order to not change the instance the
add(SparseGradient)
method should be used.- Parameters:
a
- instance to multiply
-
multiply
public SparseGradient multiply(double c)
'×' operator.- Specified by:
multiply
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
c
- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public SparseGradient multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiply
in interfaceFieldElement<SparseGradient>
- Parameters:
n
- Number of timesthis
must be added to itself.- Returns:
- A new element representing n × this.
-
divide
public SparseGradient divide(SparseGradient a)
Compute this ÷ a.- Specified by:
divide
in interfaceFieldElement<SparseGradient>
- Parameters:
a
- element to divide by- Returns:
- a new element representing this ÷ a
-
divide
public SparseGradient divide(double c)
'÷' operator.- Specified by:
divide
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
c
- right hand side parameter of the operator- Returns:
- this÷a
-
negate
public SparseGradient negate()
Returns the additive inverse ofthis
element.- Specified by:
negate
in interfaceFieldElement<SparseGradient>
- Returns:
- the opposite of
this
.
-
getField
public Field<SparseGradient> getField()
Get theField
to which the instance belongs.- Specified by:
getField
in interfaceFieldElement<SparseGradient>
- Returns:
Field
to which the instance belongs
-
remainder
public SparseGradient remainder(double a)
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public SparseGradient remainder(SparseGradient a)
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
abs
public SparseGradient abs()
absolute value.Just another name for
CalculusFieldElement.norm()
- Specified by:
abs
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- abs(this)
-
ceil
public SparseGradient ceil()
Get the smallest whole number larger than instance.- Specified by:
ceil
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- ceil(this)
-
floor
public SparseGradient floor()
Get the largest whole number smaller than instance.- Specified by:
floor
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- floor(this)
-
rint
public SparseGradient rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rint
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public SparseGradient sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
sign
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public SparseGradient copySign(SparseGradient sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public SparseGradient copySign(double sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
scalb
public SparseGradient scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalb
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
n
- power of 2- Returns:
- this × 2n
-
ulp
public SparseGradient ulp()
Compute least significant bit (Unit in Last Position) for a number.The
ulp
function is a step function, hence all its derivatives are 0.- Specified by:
ulp
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- ulp(this)
- Since:
- 2.0
-
hypot
public SparseGradient hypot(SparseGradient y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypot
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
y
- a value- Returns:
- sqrt(this2 +y2)
-
hypot
public static SparseGradient hypot(SparseGradient x, SparseGradient y)
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Parameters:
x
- a valuey
- a value- Returns:
- sqrt(x2 +y2)
-
reciprocal
public SparseGradient reciprocal()
Returns the multiplicative inverse ofthis
element.- Specified by:
reciprocal
in interfaceCalculusFieldElement<SparseGradient>
- Specified by:
reciprocal
in interfaceFieldElement<SparseGradient>
- Returns:
- the inverse of
this
.
-
sqrt
public SparseGradient sqrt()
Square root.- Specified by:
sqrt
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- square root of the instance
-
cbrt
public SparseGradient cbrt()
Cubic root.- Specified by:
cbrt
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- cubic root of the instance
-
rootN
public SparseGradient rootN(int n)
Nth root.- Specified by:
rootN
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
n
- order of the root- Returns:
- nth root of the instance
-
pow
public SparseGradient pow(double p)
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
p
- power to apply- Returns:
- thisp
-
pow
public SparseGradient pow(int n)
Integer power operation.- Specified by:
pow
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
n
- power to apply- Returns:
- thisn
-
pow
public SparseGradient pow(SparseGradient e)
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
e
- exponent- Returns:
- thise
-
pow
public static SparseGradient pow(double a, SparseGradient x)
Compute ax where a is a double and x aSparseGradient
- Parameters:
a
- number to exponentiatex
- power to apply- Returns:
- ax
-
exp
public SparseGradient exp()
Exponential.- Specified by:
exp
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- exponential of the instance
-
expm1
public SparseGradient expm1()
Exponential minus 1.- Specified by:
expm1
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- exponential minus one of the instance
-
log
public SparseGradient log()
Natural logarithm.- Specified by:
log
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- logarithm of the instance
-
log10
public SparseGradient log10()
Base 10 logarithm.- Specified by:
log10
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- base 10 logarithm of the instance
-
log1p
public SparseGradient log1p()
Shifted natural logarithm.- Specified by:
log1p
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- logarithm of one plus the instance
-
cos
public SparseGradient cos()
Cosine operation.- Specified by:
cos
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- cos(this)
-
sin
public SparseGradient sin()
Sine operation.- Specified by:
sin
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- sin(this)
-
sinCos
public FieldSinCos<SparseGradient> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCos
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- [sin(this), cos(this)]
-
tan
public SparseGradient tan()
Tangent operation.- Specified by:
tan
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- tan(this)
-
acos
public SparseGradient acos()
Arc cosine operation.- Specified by:
acos
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- acos(this)
-
asin
public SparseGradient asin()
Arc sine operation.- Specified by:
asin
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- asin(this)
-
atan
public SparseGradient atan()
Arc tangent operation.- Specified by:
atan
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- atan(this)
-
atan2
public SparseGradient atan2(SparseGradient x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2
, this method computesatan2(this, x)
, i.e. the instance represents they
argument and thex
argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2
two-arguments arc tangent and putsx
as its first argument.- Specified by:
atan2
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
x
- second argument of the arc tangent- Returns:
- atan2(this, x)
-
atan2
public static SparseGradient atan2(SparseGradient y, SparseGradient x)
Two arguments arc tangent operation.- Parameters:
y
- first argument of the arc tangentx
- second argument of the arc tangent- Returns:
- atan2(y, x)
-
cosh
public SparseGradient cosh()
Hyperbolic cosine operation.- Specified by:
cosh
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- cosh(this)
-
sinh
public SparseGradient sinh()
Hyperbolic sine operation.- Specified by:
sinh
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<SparseGradient> sinhCosh()
Combined hyperbolic sine and sosine operation.- Specified by:
sinhCosh
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- [sinh(this), cosh(this)]
-
tanh
public SparseGradient tanh()
Hyperbolic tangent operation.- Specified by:
tanh
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- tanh(this)
-
acosh
public SparseGradient acosh()
Inverse hyperbolic cosine operation.- Specified by:
acosh
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- acosh(this)
-
asinh
public SparseGradient asinh()
Inverse hyperbolic sine operation.- Specified by:
asinh
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- asin(this)
-
atanh
public SparseGradient atanh()
Inverse hyperbolic tangent operation.- Specified by:
atanh
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- atanh(this)
-
toDegrees
public SparseGradient toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegrees
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- instance converted into degrees
-
toRadians
public SparseGradient toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadians
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- instance converted into radians
-
taylor
public double taylor(double... delta)
Evaluate Taylor expansion of a sparse gradient.- Parameters:
delta
- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
compose
public SparseGradient compose(double... f)
Compute composition of the instance by a univariate function.- Parameters:
f
- array of value and derivatives of the function at the current point (i.e. [f(getValue()
), f'(getValue()
), f''(getValue()
)...]).- Returns:
- f(this)
- Throws:
MathIllegalArgumentException
- if the number of elements in the array is not equal to 2 (i.e. value and first derivative)
-
linearCombination
public SparseGradient linearCombination(SparseGradient[] a, SparseGradient[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match
-
linearCombination
public SparseGradient linearCombination(double[] a, SparseGradient[] b)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3, SparseGradient a4, SparseGradient b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3, double a4, SparseGradient b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<SparseGradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public SparseGradient getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPi
in interfaceCalculusFieldElement<SparseGradient>
- Returns:
- Archimedes constant π
-
equals
public boolean equals(Object other)
Test for the equality of two sparse gradients.Sparse gradients are considered equal if they have the same value and the same derivatives.
-
-