Class SparseGradient
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.SparseGradient
-
- All Implemented Interfaces:
Serializable,CalculusFieldElement<SparseGradient>,FieldElement<SparseGradient>
public class SparseGradient extends Object implements CalculusFieldElement<SparseGradient>, Serializable
First derivative computation with large number of variables.This class plays a similar role to
DerivativeStructure, with a focus on efficiency when dealing with large number of independent variables and most computation depend only on a few of them, and when only first derivative is desired. When these conditions are met, this class should be much faster thanDerivativeStructureand use less memory.- See Also:
- Serialized Form
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description SparseGradientabs()absolute value.SparseGradientacos()Arc cosine operation.SparseGradientacosh()Inverse hyperbolic cosine operation.SparseGradientadd(double c)'+' operator.SparseGradientadd(SparseGradient a)Compute this + a.voidaddInPlace(SparseGradient a)Add in place.SparseGradientasin()Arc sine operation.SparseGradientasinh()Inverse hyperbolic sine operation.SparseGradientatan()Arc tangent operation.SparseGradientatan2(SparseGradient x)Two arguments arc tangent operation.static SparseGradientatan2(SparseGradient y, SparseGradient x)Two arguments arc tangent operation.SparseGradientatanh()Inverse hyperbolic tangent operation.SparseGradientcbrt()Cubic root.SparseGradientceil()Get the smallest whole number larger than instance.SparseGradientcompose(double... f)Compute composition of the instance by a univariate function.SparseGradientcopySign(double sign)Returns the instance with the sign of the argument.SparseGradientcopySign(SparseGradient sign)Returns the instance with the sign of the argument.SparseGradientcos()Cosine operation.SparseGradientcosh()Hyperbolic cosine operation.static SparseGradientcreateConstant(double value)Factory method creating a constant.static SparseGradientcreateVariable(int idx, double value)Factory method creating an independent variable.SparseGradientdivide(double c)'÷' operator.SparseGradientdivide(SparseGradient a)Compute this ÷ a.booleanequals(Object other)Test for the equality of two sparse gradients.SparseGradientexp()Exponential.SparseGradientexpm1()Exponential minus 1.SparseGradientfloor()Get the largest whole number smaller than instance.doublegetDerivative(int index)Get the derivative with respect to a particular index variable.Field<SparseGradient>getField()Get theFieldto which the instance belongs.SparseGradientgetPi()Get the Archimedes constant π.doublegetReal()Get the real value of the number.doublegetValue()Get the value of the function.inthashCode()Get a hashCode for the derivative structure.SparseGradienthypot(SparseGradient y)Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static SparseGradienthypot(SparseGradient x, SparseGradient y)Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.SparseGradientlinearCombination(double[] a, SparseGradient[] b)Compute a linear combination.SparseGradientlinearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2)Compute a linear combination.SparseGradientlinearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3)Compute a linear combination.SparseGradientlinearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3, double a4, SparseGradient b4)Compute a linear combination.SparseGradientlinearCombination(SparseGradient[] a, SparseGradient[] b)Compute a linear combination.SparseGradientlinearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2)Compute a linear combination.SparseGradientlinearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3)Compute a linear combination.SparseGradientlinearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3, SparseGradient a4, SparseGradient b4)Compute a linear combination.SparseGradientlog()Natural logarithm.SparseGradientlog10()Base 10 logarithm.SparseGradientlog1p()Shifted natural logarithm.SparseGradientmultiply(double c)'×' operator.SparseGradientmultiply(int n)Compute n × this.SparseGradientmultiply(SparseGradient a)Compute this × a.voidmultiplyInPlace(SparseGradient a)Multiply in place.SparseGradientnegate()Returns the additive inverse ofthiselement.SparseGradientnewInstance(double v)Create an instance corresponding to a constant real value.intnumVars()Find the number of variables.SparseGradientpow(double p)Power operation.static SparseGradientpow(double a, SparseGradient x)Compute ax where a is a double and x aSparseGradientSparseGradientpow(int n)Integer power operation.SparseGradientpow(SparseGradient e)Power operation.SparseGradientreciprocal()Returns the multiplicative inverse ofthiselement.SparseGradientremainder(double a)IEEE remainder operator.SparseGradientremainder(SparseGradient a)IEEE remainder operator.SparseGradientrint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.SparseGradientrootN(int n)Nth root.SparseGradientscalb(int n)Multiply the instance by a power of 2.SparseGradientsign()Compute the sign of the instance.SparseGradientsin()Sine operation.FieldSinCos<SparseGradient>sinCos()Combined Sine and Cosine operation.SparseGradientsinh()Hyperbolic sine operation.FieldSinhCosh<SparseGradient>sinhCosh()Combined hyperbolic sine and sosine operation.SparseGradientsqrt()Square root.SparseGradientsubtract(double c)'-' operator.SparseGradientsubtract(SparseGradient a)Compute this - a.SparseGradienttan()Tangent operation.SparseGradienttanh()Hyperbolic tangent operation.doubletaylor(double... delta)Evaluate Taylor expansion of a sparse gradient.SparseGradienttoDegrees()Convert radians to degrees, with error of less than 0.5 ULPSparseGradienttoRadians()Convert degrees to radians, with error of less than 0.5 ULPSparseGradientulp()Compute least significant bit (Unit in Last Position) for a number.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Method Detail
-
newInstance
public SparseGradient newInstance(double v)
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<SparseGradient>- Parameters:
v- constant real value- Returns:
- instance corresponding to a constant real value
-
createConstant
public static SparseGradient createConstant(double value)
Factory method creating a constant.- Parameters:
value- value of the constant- Returns:
- a new instance
-
createVariable
public static SparseGradient createVariable(int idx, double value)
Factory method creating an independent variable.- Parameters:
idx- index of the variablevalue- value of the variable- Returns:
- a new instance
-
numVars
public int numVars()
Find the number of variables.- Returns:
- number of variables
-
getDerivative
public double getDerivative(int index)
Get the derivative with respect to a particular index variable.- Parameters:
index- index to differentiate with.- Returns:
- derivative with respect to a particular index variable
-
getValue
public double getValue()
Get the value of the function.- Returns:
- value of the function.
-
getReal
public double getReal()
Get the real value of the number.- Specified by:
getRealin interfaceFieldElement<SparseGradient>- Returns:
- real value
-
add
public SparseGradient add(SparseGradient a)
Compute this + a.- Specified by:
addin interfaceFieldElement<SparseGradient>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
addInPlace
public void addInPlace(SparseGradient a)
Add in place.This method is designed to be faster when used multiple times in a loop.
The instance is changed here, in order to not change the instance the
add(SparseGradient)method should be used.- Parameters:
a- instance to add
-
add
public SparseGradient add(double c)
'+' operator.- Specified by:
addin interfaceCalculusFieldElement<SparseGradient>- Parameters:
c- right hand side parameter of the operator- Returns:
- this+a
-
subtract
public SparseGradient subtract(SparseGradient a)
Compute this - a.- Specified by:
subtractin interfaceFieldElement<SparseGradient>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
subtract
public SparseGradient subtract(double c)
'-' operator.- Specified by:
subtractin interfaceCalculusFieldElement<SparseGradient>- Parameters:
c- right hand side parameter of the operator- Returns:
- this-a
-
multiply
public SparseGradient multiply(SparseGradient a)
Compute this × a.- Specified by:
multiplyin interfaceFieldElement<SparseGradient>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
multiplyInPlace
public void multiplyInPlace(SparseGradient a)
Multiply in place.This method is designed to be faster when used multiple times in a loop.
The instance is changed here, in order to not change the instance the
add(SparseGradient)method should be used.- Parameters:
a- instance to multiply
-
multiply
public SparseGradient multiply(double c)
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<SparseGradient>- Parameters:
c- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public SparseGradient multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiplyin interfaceFieldElement<SparseGradient>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
divide
public SparseGradient divide(SparseGradient a)
Compute this ÷ a.- Specified by:
dividein interfaceFieldElement<SparseGradient>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
divide
public SparseGradient divide(double c)
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<SparseGradient>- Parameters:
c- right hand side parameter of the operator- Returns:
- this÷a
-
negate
public SparseGradient negate()
Returns the additive inverse ofthiselement.- Specified by:
negatein interfaceFieldElement<SparseGradient>- Returns:
- the opposite of
this.
-
getField
public Field<SparseGradient> getField()
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<SparseGradient>- Returns:
Fieldto which the instance belongs
-
remainder
public SparseGradient remainder(double a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public SparseGradient remainder(SparseGradient a)
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
abs
public SparseGradient abs()
absolute value.Just another name for
CalculusFieldElement.norm()- Specified by:
absin interfaceCalculusFieldElement<SparseGradient>- Returns:
- abs(this)
-
ceil
public SparseGradient ceil()
Get the smallest whole number larger than instance.- Specified by:
ceilin interfaceCalculusFieldElement<SparseGradient>- Returns:
- ceil(this)
-
floor
public SparseGradient floor()
Get the largest whole number smaller than instance.- Specified by:
floorin interfaceCalculusFieldElement<SparseGradient>- Returns:
- floor(this)
-
rint
public SparseGradient rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rintin interfaceCalculusFieldElement<SparseGradient>- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
public SparseGradient sign()
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
signin interfaceCalculusFieldElement<SparseGradient>- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
public SparseGradient copySign(SparseGradient sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<SparseGradient>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
public SparseGradient copySign(double sign)
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<SparseGradient>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
scalb
public SparseGradient scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<SparseGradient>- Parameters:
n- power of 2- Returns:
- this × 2n
-
ulp
public SparseGradient ulp()
Compute least significant bit (Unit in Last Position) for a number.The
ulpfunction is a step function, hence all its derivatives are 0.- Specified by:
ulpin interfaceCalculusFieldElement<SparseGradient>- Returns:
- ulp(this)
- Since:
- 2.0
-
hypot
public SparseGradient hypot(SparseGradient y)
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<SparseGradient>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
hypot
public static SparseGradient hypot(SparseGradient x, SparseGradient y)
Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Parameters:
x- a valuey- a value- Returns:
- sqrt(x2 +y2)
-
reciprocal
public SparseGradient reciprocal()
Returns the multiplicative inverse ofthiselement.- Specified by:
reciprocalin interfaceCalculusFieldElement<SparseGradient>- Specified by:
reciprocalin interfaceFieldElement<SparseGradient>- Returns:
- the inverse of
this.
-
sqrt
public SparseGradient sqrt()
Square root.- Specified by:
sqrtin interfaceCalculusFieldElement<SparseGradient>- Returns:
- square root of the instance
-
cbrt
public SparseGradient cbrt()
Cubic root.- Specified by:
cbrtin interfaceCalculusFieldElement<SparseGradient>- Returns:
- cubic root of the instance
-
rootN
public SparseGradient rootN(int n)
Nth root.- Specified by:
rootNin interfaceCalculusFieldElement<SparseGradient>- Parameters:
n- order of the root- Returns:
- nth root of the instance
-
pow
public SparseGradient pow(double p)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<SparseGradient>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
public SparseGradient pow(int n)
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<SparseGradient>- Parameters:
n- power to apply- Returns:
- thisn
-
pow
public SparseGradient pow(SparseGradient e)
Power operation.- Specified by:
powin interfaceCalculusFieldElement<SparseGradient>- Parameters:
e- exponent- Returns:
- thise
-
pow
public static SparseGradient pow(double a, SparseGradient x)
Compute ax where a is a double and x aSparseGradient- Parameters:
a- number to exponentiatex- power to apply- Returns:
- ax
-
exp
public SparseGradient exp()
Exponential.- Specified by:
expin interfaceCalculusFieldElement<SparseGradient>- Returns:
- exponential of the instance
-
expm1
public SparseGradient expm1()
Exponential minus 1.- Specified by:
expm1in interfaceCalculusFieldElement<SparseGradient>- Returns:
- exponential minus one of the instance
-
log
public SparseGradient log()
Natural logarithm.- Specified by:
login interfaceCalculusFieldElement<SparseGradient>- Returns:
- logarithm of the instance
-
log10
public SparseGradient log10()
Base 10 logarithm.- Specified by:
log10in interfaceCalculusFieldElement<SparseGradient>- Returns:
- base 10 logarithm of the instance
-
log1p
public SparseGradient log1p()
Shifted natural logarithm.- Specified by:
log1pin interfaceCalculusFieldElement<SparseGradient>- Returns:
- logarithm of one plus the instance
-
cos
public SparseGradient cos()
Cosine operation.- Specified by:
cosin interfaceCalculusFieldElement<SparseGradient>- Returns:
- cos(this)
-
sin
public SparseGradient sin()
Sine operation.- Specified by:
sinin interfaceCalculusFieldElement<SparseGradient>- Returns:
- sin(this)
-
sinCos
public FieldSinCos<SparseGradient> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCosin interfaceCalculusFieldElement<SparseGradient>- Returns:
- [sin(this), cos(this)]
-
tan
public SparseGradient tan()
Tangent operation.- Specified by:
tanin interfaceCalculusFieldElement<SparseGradient>- Returns:
- tan(this)
-
acos
public SparseGradient acos()
Arc cosine operation.- Specified by:
acosin interfaceCalculusFieldElement<SparseGradient>- Returns:
- acos(this)
-
asin
public SparseGradient asin()
Arc sine operation.- Specified by:
asinin interfaceCalculusFieldElement<SparseGradient>- Returns:
- asin(this)
-
atan
public SparseGradient atan()
Arc tangent operation.- Specified by:
atanin interfaceCalculusFieldElement<SparseGradient>- Returns:
- atan(this)
-
atan2
public SparseGradient atan2(SparseGradient x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<SparseGradient>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
atan2
public static SparseGradient atan2(SparseGradient y, SparseGradient x)
Two arguments arc tangent operation.- Parameters:
y- first argument of the arc tangentx- second argument of the arc tangent- Returns:
- atan2(y, x)
-
cosh
public SparseGradient cosh()
Hyperbolic cosine operation.- Specified by:
coshin interfaceCalculusFieldElement<SparseGradient>- Returns:
- cosh(this)
-
sinh
public SparseGradient sinh()
Hyperbolic sine operation.- Specified by:
sinhin interfaceCalculusFieldElement<SparseGradient>- Returns:
- sinh(this)
-
sinhCosh
public FieldSinhCosh<SparseGradient> sinhCosh()
Combined hyperbolic sine and sosine operation.- Specified by:
sinhCoshin interfaceCalculusFieldElement<SparseGradient>- Returns:
- [sinh(this), cosh(this)]
-
tanh
public SparseGradient tanh()
Hyperbolic tangent operation.- Specified by:
tanhin interfaceCalculusFieldElement<SparseGradient>- Returns:
- tanh(this)
-
acosh
public SparseGradient acosh()
Inverse hyperbolic cosine operation.- Specified by:
acoshin interfaceCalculusFieldElement<SparseGradient>- Returns:
- acosh(this)
-
asinh
public SparseGradient asinh()
Inverse hyperbolic sine operation.- Specified by:
asinhin interfaceCalculusFieldElement<SparseGradient>- Returns:
- asin(this)
-
atanh
public SparseGradient atanh()
Inverse hyperbolic tangent operation.- Specified by:
atanhin interfaceCalculusFieldElement<SparseGradient>- Returns:
- atanh(this)
-
toDegrees
public SparseGradient toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<SparseGradient>- Returns:
- instance converted into degrees
-
toRadians
public SparseGradient toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<SparseGradient>- Returns:
- instance converted into radians
-
taylor
public double taylor(double... delta)
Evaluate Taylor expansion of a sparse gradient.- Parameters:
delta- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
compose
public SparseGradient compose(double... f)
Compute composition of the instance by a univariate function.- Parameters:
f- array of value and derivatives of the function at the current point (i.e. [f(getValue()), f'(getValue()), f''(getValue())...]).- Returns:
- f(this)
- Throws:
MathIllegalArgumentException- if the number of elements in the array is not equal to 2 (i.e. value and first derivative)
-
linearCombination
public SparseGradient linearCombination(SparseGradient[] a, SparseGradient[] b) throws MathIllegalArgumentException
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public SparseGradient linearCombination(double[] a, SparseGradient[] b)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3, SparseGradient a4, SparseGradient b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3, double a4, SparseGradient b4)
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
getPi
public SparseGradient getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<SparseGradient>- Returns:
- Archimedes constant π
-
equals
public boolean equals(Object other)
Test for the equality of two sparse gradients.Sparse gradients are considered equal if they have the same value and the same derivatives.
-
-