Uses of Class
org.hipparchus.exception.MathIllegalStateException
-
Packages that use MathIllegalStateException Package Description org.hipparchus.analysis.integration Numerical integration (quadrature) algorithms for univariate real functions.org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.clustering Clustering algorithms.org.hipparchus.complex Complex number type and implementations of complex transcendental functions.org.hipparchus.fraction Fraction number type and fraction number formatting.org.hipparchus.geometry This package is the top level package for geometry.org.hipparchus.geometry.euclidean.oned This package provides basic 1D geometry components.org.hipparchus.geometry.euclidean.threed This package provides basic 3D geometry components.org.hipparchus.geometry.euclidean.twod This package provides basic 2D geometry components.org.hipparchus.geometry.euclidean.twod.hull This package provides algorithms to generate the convex hull for a set of points in an two-dimensional euclidean space.org.hipparchus.geometry.hull This package provides interfaces and classes related to the convex hull problem.org.hipparchus.geometry.spherical.twod This package provides basic geometry components on the 2-sphere.org.hipparchus.linear Linear algebra support.org.hipparchus.migration.exception This package provides migration classes from Apache Commons Math to Hipparchus.org.hipparchus.migration.geometry.euclidean This package provides migration classes from Apache Commons Math to Hipparchus.org.hipparchus.migration.ode This package provides migration classes from Apache Commons Math to Hipparchus.org.hipparchus.migration.ode.sampling This package provides migration classes from Apache Commons Math to Hipparchus.org.hipparchus.migration.optim.linear This package provides migration classes from Apache Commons Math to Hipparchus.org.hipparchus.ode This package provides classes to solve Ordinary Differential Equations problems.org.hipparchus.ode.events Eventsorg.hipparchus.ode.nonstiff This package provides classes to solve non-stiff Ordinary Differential Equations problems.org.hipparchus.ode.sampling This package provides classes to handle sampling steps during Ordinary Differential Equations integration.org.hipparchus.optim Generally, optimizers are algorithms that will eitherminimize
ormaximize
a scalar function, called theobjective function
.org.hipparchus.optim.linear Optimization algorithms for linear constrained problems.org.hipparchus.optim.nonlinear.scalar Algorithms for optimizing a scalar function.org.hipparchus.optim.nonlinear.scalar.gradient This package provides optimization algorithms that require derivatives.org.hipparchus.optim.nonlinear.scalar.noderiv This package provides optimization algorithms that do not require derivatives.org.hipparchus.optim.univariate One-dimensional optimization algorithms.org.hipparchus.random Random number and random data generators.org.hipparchus.special Implementations of special functions such as Beta and Gamma.org.hipparchus.stat.descriptive Generic univariate and multivariate summary statistic objects.org.hipparchus.stat.fitting Statistical methods for fitting distributions.org.hipparchus.stat.inference Classes providing hypothesis testing.org.hipparchus.util Convenience routines and common data structures used throughout the Hipparchus library. -
-
Uses of MathIllegalStateException in org.hipparchus.analysis.integration
Methods in org.hipparchus.analysis.integration that throw MathIllegalStateException Modifier and Type Method Description protected T
BaseAbstractFieldUnivariateIntegrator. computeObjectiveValue(T point)
Compute the objective function value.protected double
BaseAbstractUnivariateIntegrator. computeObjectiveValue(double point)
Compute the objective function value.protected abstract T
BaseAbstractFieldUnivariateIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected abstract double
BaseAbstractUnivariateIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected T
FieldMidPointIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected T
FieldRombergIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected T
FieldSimpsonIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected T
FieldTrapezoidIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected T
IterativeLegendreFieldGaussIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected double
IterativeLegendreGaussIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected double
MidPointIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected double
RombergIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected double
SimpsonIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.protected double
TrapezoidIntegrator. doIntegrate()
Method for implementing actual integration algorithms in derived classes.T
BaseAbstractFieldUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<T> f, T lower, T upper)
Integrate the function in the given interval.double
BaseAbstractUnivariateIntegrator. integrate(int maxEval, UnivariateFunction f, double lower, double upper)
Integrate the function in the given interval.T
FieldUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max)
Integrate the function in the given interval.double
UnivariateIntegrator. integrate(int maxEval, UnivariateFunction f, double min, double max)
Integrate the function in the given interval. -
Uses of MathIllegalStateException in org.hipparchus.analysis.solvers
Methods in org.hipparchus.analysis.solvers that throw MathIllegalStateException Modifier and Type Method Description protected double
BaseAbstractUnivariateSolver. computeObjectiveValue(double point)
Compute the objective function value.protected DerivativeStructure
AbstractUnivariateDifferentiableSolver. computeObjectiveValueAndDerivative(double point)
Compute the objective function value.protected abstract double
BaseAbstractUnivariateSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
BaseSecantSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
BisectionSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
BrentSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.double
LaguerreSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
MullerSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
MullerSolver2. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
NewtonRaphsonSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
RiddersSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected double
SecantSolver. doSolve()
Method for implementing actual optimization algorithms in derived classes.protected BracketedUnivariateSolver.Interval
BaseSecantSolver. doSolveInterval()
Find a root and return the containing interval.protected void
BaseAbstractUnivariateSolver. incrementEvaluationCount()
Increment the evaluation count by one.double
BaseAbstractUnivariateSolver. solve(int maxEval, F f, double startValue)
Solve for a zero in the vicinity ofstartValue
.double
BaseAbstractUnivariateSolver. solve(int maxEval, F f, double min, double max, double startValue)
Solve for a zero in the given interval, start atstartValue
.double
BaseUnivariateSolver. solve(int maxEval, F f, double min, double max)
Solve for a zero root in the given interval.double
BaseUnivariateSolver. solve(int maxEval, F f, double min, double max, double startValue)
Solve for a zero in the given interval, start atstartValue
.double
BracketingNthOrderBrentSolver. solve(int maxEval, UnivariateFunction f, double min, double max, double startValue, AllowedSolution allowedSolution)
Solve for a zero in the given interval, start atstartValue
.double
BracketingNthOrderBrentSolver. solve(int maxEval, UnivariateFunction f, double min, double max, AllowedSolution allowedSolution)
Solve for a zero in the given interval.double
NewtonRaphsonSolver. solve(int maxEval, UnivariateDifferentiableFunction f, double min, double max)
Find a zero near the midpoint ofmin
andmax
.Complex[]
LaguerreSolver. solveAllComplex(double[] coefficients, double initial)
Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.Complex
LaguerreSolver. solveComplex(double[] coefficients, double initial)
Find a complex root for the polynomial with the given coefficients, starting from the given initial value.BracketedUnivariateSolver.Interval
BaseSecantSolver. solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding the root.default BracketedRealFieldUnivariateSolver.Interval<T>
BracketedRealFieldUnivariateSolver. solveInterval(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max)
Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedRealFieldUnivariateSolver.Interval<T>
BracketedRealFieldUnivariateSolver. solveInterval(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max, T startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding the root.default BracketedUnivariateSolver.Interval
BracketedUnivariateSolver. solveInterval(int maxEval, F f, double min, double max)
Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedUnivariateSolver.Interval
BracketedUnivariateSolver. solveInterval(int maxEval, F f, double min, double max, double startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedUnivariateSolver.Interval
BracketingNthOrderBrentSolver. solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedRealFieldUnivariateSolver.Interval<T>
FieldBracketingNthOrderBrentSolver. solveInterval(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max, T startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding the root. -
Uses of MathIllegalStateException in org.hipparchus.clustering
Methods in org.hipparchus.clustering that throw MathIllegalStateException Modifier and Type Method Description abstract List<? extends Cluster<T>>
Clusterer. cluster(Collection<T> points)
Perform a cluster analysis on the given set ofClusterable
instances.List<CentroidCluster<T>>
KMeansPlusPlusClusterer. cluster(Collection<T> points)
Runs the K-means++ clustering algorithm.List<CentroidCluster<T>>
MultiKMeansPlusPlusClusterer. cluster(Collection<T> points)
Runs the K-means++ clustering algorithm. -
Uses of MathIllegalStateException in org.hipparchus.complex
Methods in org.hipparchus.complex that throw MathIllegalStateException Modifier and Type Method Description double
RootsOfUnity. getImaginary(int k)
Get the imaginary part of thek
-thn
-th root of unity.double
RootsOfUnity. getReal(int k)
Get the real part of thek
-thn
-th root of unity.boolean
RootsOfUnity. isCounterClockWise()
Complex
ComplexFormat. parse(String source)
Parses a string to produce aComplex
object. -
Uses of MathIllegalStateException in org.hipparchus.fraction
Methods in org.hipparchus.fraction that throw MathIllegalStateException Modifier and Type Method Description StringBuffer
FractionFormat. format(Object obj, StringBuffer toAppendTo, FieldPosition pos)
Formats an object and appends the result to a StringBuffer.BigFraction
BigFractionFormat. parse(String source)
Parses a string to produce aBigFraction
object.Fraction
FractionFormat. parse(String source)
Parses a string to produce aFraction
object.Constructors in org.hipparchus.fraction that throw MathIllegalStateException Constructor Description BigFraction(double value, double epsilon, int maxIterations)
Create a fraction given the double value and maximum error allowed.BigFraction(double value, long maxDenominator)
Create a fraction given the double value and maximum denominator.Fraction(double value)
Create a fraction given the double value.Fraction(double value, double epsilon, int maxIterations)
Create a fraction given the double value and maximum error allowed.Fraction(double value, int maxDenominator)
Create a fraction given the double value and maximum denominator. -
Uses of MathIllegalStateException in org.hipparchus.geometry
Methods in org.hipparchus.geometry that throw MathIllegalStateException Modifier and Type Method Description abstract Vector<S,V>
VectorFormat. parse(String source)
Parses a string to produce aVector
object. -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.oned
Methods in org.hipparchus.geometry.euclidean.oned that throw MathIllegalStateException Modifier and Type Method Description Vector1D
Vector1DFormat. parse(String source)
Parses a string to produce aVector
object. -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.threed
Methods in org.hipparchus.geometry.euclidean.threed that throw MathIllegalStateException Modifier and Type Method Description T[]
FieldRotation. getAngles(RotationOrder order, RotationConvention convention)
Get the Cardan or Euler angles corresponding to the instance.double[]
Rotation. getAngles(RotationOrder order, RotationConvention convention)
Get the Cardan or Euler angles corresponding to the instance.Vector3D
Vector3DFormat. parse(String source)
Parses a string to produce aVector3D
object. -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.twod
Methods in org.hipparchus.geometry.euclidean.twod that throw MathIllegalStateException Modifier and Type Method Description Vector2D
Vector2DFormat. parse(String source)
Parses a string to produce aVector
object. -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.twod.hull
Methods in org.hipparchus.geometry.euclidean.twod.hull that throw MathIllegalStateException Modifier and Type Method Description ConvexHull2D
ConvexHullGenerator2D. generate(Collection<Vector2D> points)
Builds the convex hull from the set of input points. -
Uses of MathIllegalStateException in org.hipparchus.geometry.hull
Methods in org.hipparchus.geometry.hull that throw MathIllegalStateException Modifier and Type Method Description ConvexHull<S,P>
ConvexHullGenerator. generate(Collection<P> points)
Builds the convex hull from the set of input points. -
Uses of MathIllegalStateException in org.hipparchus.geometry.spherical.twod
Methods in org.hipparchus.geometry.spherical.twod that throw MathIllegalStateException Modifier and Type Method Description protected void
SphericalPolygonsSet. computeGeometricalProperties()
Compute some geometrical properties.List<Vertex>
SphericalPolygonsSet. getBoundaryLoops()
Get the boundary loops of the polygon. -
Uses of MathIllegalStateException in org.hipparchus.linear
Methods in org.hipparchus.linear that throw MathIllegalStateException Modifier and Type Method Description RealVector
IterativeLinearSolver. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
IterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift)
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b, boolean goodb, double shift)
Returns the solution to the system (A - shift · I) · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
ConjugateGradient. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.abstract RealVector
IterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.abstract RealVector
PreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift)
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b. -
Uses of MathIllegalStateException in org.hipparchus.migration.exception
Subclasses of MathIllegalStateException in org.hipparchus.migration.exception Modifier and Type Class Description class
ConvergenceException
Deprecated.as of 1.0, this exception is replaced byMathIllegalStateException
class
MathInternalError
Deprecated.as of 1.0, this exception is replaced byMathIllegalStateException
class
MathParseException
Deprecated.as of 1.0, this exception is replaced byMathIllegalStateException
class
MaxCountExceededException
Deprecated.as of 1.0, this exception is replaced byMathIllegalStateException
class
TooManyEvaluationsException
Deprecated.as of 1.0, this exception is replaced byMathIllegalArgumentException
class
TooManyIterationsException
Deprecated.as of 1.0, this exception is replaced byMathIllegalArgumentException
-
Uses of MathIllegalStateException in org.hipparchus.migration.geometry.euclidean
Subclasses of MathIllegalStateException in org.hipparchus.migration.geometry.euclidean Modifier and Type Class Description class
CardanEulerSingularityException
Deprecated.as of 1.0, this exception is replaced byMathIllegalStateException
-
Uses of MathIllegalStateException in org.hipparchus.migration.ode
Methods in org.hipparchus.migration.ode that throw MathIllegalStateException Modifier and Type Method Description void
FirstOrderDifferentialEquations. computeDerivatives(double t, double[] y, double[] yDot)
Deprecated.Get the current time derivative of the state vector.default double[]
SecondaryEquations. computeDerivatives(double t, double[] primary, double[] primaryDot, double[] secondary)
Deprecated.Compute the derivatives related to the secondary state parameters.void
SecondaryEquations. computeDerivatives(double t, double[] primary, double[] primaryDot, double[] secondary, double[] secondaryDot)
Deprecated.Compute the derivatives related to the secondary state parameters.double[][]
MainStateJacobianProvider. computeMainStateJacobian(double t, double[] y, double[] yDot)
Deprecated.Compute the jacobian matrix of ODE with respect to main state.default double[]
ParameterJacobianProvider. computeParameterJacobian(double t, double[] y, double[] yDot, String paramName)
Deprecated.Compute the Jacobian matrix of ODE with respect to one parameter.void
ParameterJacobianProvider. computeParameterJacobian(double t, double[] y, double[] yDot, String paramName, double[] dFdP)
Deprecated.Compute the Jacobian matrix of ODE with respect to one parameter.double[]
ContinuousOutputModel. getInterpolatedDerivatives()
Deprecated.Get the derivatives of the state vector of the interpolated point.double[]
ContinuousOutputModel. getInterpolatedSecondaryDerivatives(int secondaryStateIndex)
Deprecated.Get the interpolated secondary derivatives corresponding to the secondary equations.double[]
ContinuousOutputModel. getInterpolatedSecondaryState(int secondaryStateIndex)
Deprecated.Get the interpolated secondary state corresponding to the secondary equations.double[]
ContinuousOutputModel. getInterpolatedState()
Deprecated.Get the state vector of the interpolated point. -
Uses of MathIllegalStateException in org.hipparchus.migration.ode.sampling
Methods in org.hipparchus.migration.ode.sampling that throw MathIllegalStateException Modifier and Type Method Description StepInterpolator
StepInterpolator. copy()
Deprecated.Copy the instance.double[]
StepInterpolator. getInterpolatedDerivatives()
Deprecated.as of 1.0, replaced withODEStateInterpolator.getInterpolatedState(double)
.ODEStateAndDerivative.getPrimaryDerivative()
double[]
StepInterpolator. getInterpolatedSecondaryDerivatives(int index)
Deprecated.as of 1.0, replaced withODEStateInterpolator.getInterpolatedState(double)
.ODEStateAndDerivative.getSecondaryDerivative(int)
double[]
StepInterpolator. getInterpolatedSecondaryState(int index)
Deprecated.as of 1.0, replaced withODEStateInterpolator.getInterpolatedState(double)
.ODEState.getSecondaryState(int)
double[]
StepInterpolator. getInterpolatedState()
Deprecated.as of 1.0, replaced withODEStateInterpolator.getInterpolatedState(double)
.ODEState.getPrimaryState()
void
StepHandler. handleStep(org.hipparchus.migration.ode.sampling.MigrationStepInterpolator interpolator, boolean isLast)
Deprecated.Handle the last accepted stepdefault void
StepHandler. handleStep(ODEStateInterpolator interpolator)
Deprecated.Handle the last accepted step. -
Uses of MathIllegalStateException in org.hipparchus.migration.optim.linear
Subclasses of MathIllegalStateException in org.hipparchus.migration.optim.linear Modifier and Type Class Description class
NoFeasibleSolutionException
Deprecated.as of 1.0, this exception is replaced byMathIllegalStateException
class
UnboundedSolutionException
Deprecated.as of 1.0, this exception is replaced byMathIllegalStateException
-
Uses of MathIllegalStateException in org.hipparchus.ode
Methods in org.hipparchus.ode that throw MathIllegalStateException Modifier and Type Method Description protected FieldODEStateAndDerivative<T>
AbstractFieldIntegrator. acceptStep(AbstractFieldODEStateInterpolator<T> interpolator, T tEnd)
Accept a step, triggering events and step handlers.protected ODEStateAndDerivative
AbstractIntegrator. acceptStep(AbstractODEStateInterpolator interpolator, double tEnd)
Accept a step, triggering events and step handlers.void
DenseOutputModel. append(DenseOutputModel model)
Append another model at the end of the instance.void
FieldDenseOutputModel. append(FieldDenseOutputModel<T> model)
Append another model at the end of the instance.T[]
AbstractFieldIntegrator. computeDerivatives(T t, T[] y)
Compute the derivatives and check the number of evaluations.double[]
AbstractIntegrator. computeDerivatives(double t, double[] y)
Compute the derivatives and check the number of evaluations.Complex[]
ComplexSecondaryODE. computeDerivatives(double t, Complex[] primary, Complex[] primaryDot, Complex[] secondary)
Compute the derivatives related to the secondary state parameters.double[]
ExpandableODE. computeDerivatives(double t, double[] y)
Get the current time derivative of the complete state vector.T[]
FieldExpandableODE. computeDerivatives(T t, T[] y)
Get the current time derivative of the complete state vector.T[]
FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)
Compute the derivatives related to the secondary state parameters.double[]
SecondaryODE. computeDerivatives(double t, double[] primary, double[] primaryDot, double[] secondary)
Compute the derivatives related to the secondary state parameters.double[][]
ODEJacobiansProvider. computeMainStateJacobian(double t, double[] y, double[] yDot)
Compute the Jacobian matrix of ODE with respect to state.double[]
NamedParameterJacobianProvider. computeParameterJacobian(double t, double[] y, double[] yDot, String paramName)
Compute the Jacobian matrix of ODE with respect to one parameter.FieldODEStateAndDerivative<T>
FieldODEIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.ODEStateAndDerivative
ODEIntegrator. integrate(ExpandableODE equations, ODEState initialState, double finalTime)
Integrate the differential equations up to the given time.default ODEStateAndDerivative
ODEIntegrator. integrate(OrdinaryDifferentialEquation equations, ODEState initialState, double finalTime)
Integrate the differential equations up to the given time.protected void
MultistepFieldIntegrator. start(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T t)
Start the integration.protected void
MultistepIntegrator. start(ExpandableODE equations, ODEState initialState, double finalTime)
Start the integration. -
Uses of MathIllegalStateException in org.hipparchus.ode.events
Methods in org.hipparchus.ode.events that throw MathIllegalStateException Modifier and Type Method Description boolean
DetectorBasedEventState. evaluateStep(ODEStateInterpolator interpolator)
Evaluate the impact of the proposed step on the handler.boolean
EventState. evaluateStep(ODEStateInterpolator interpolator)
Evaluate the impact of the proposed step on the handler.boolean
FieldDetectorBasedEventState. evaluateStep(FieldODEStateInterpolator<T> interpolator)
Evaluate the impact of the proposed step on the event handler.boolean
FieldEventState. evaluateStep(FieldODEStateInterpolator<T> interpolator)
Evaluate the impact of the proposed step on the event handler.void
DetectorBasedEventState. reinitializeBegin(ODEStateInterpolator interpolator)
Reinitialize the beginning of the step.void
FieldDetectorBasedEventState. reinitializeBegin(FieldODEStateInterpolator<T> interpolator)
Reinitialize the beginning of the step. -
Uses of MathIllegalStateException in org.hipparchus.ode.nonstiff
Methods in org.hipparchus.ode.nonstiff that throw MathIllegalStateException Modifier and Type Method Description double
AdaptiveStepsizeFieldIntegrator. initializeStep(boolean forward, int order, T[] scale, FieldODEStateAndDerivative<T> state0, FieldEquationsMapper<T> mapper)
Initialize the integration step.double
AdaptiveStepsizeIntegrator. initializeStep(boolean forward, int order, double[] scale, ODEStateAndDerivative state0)
Initialize the integration step.FieldODEStateAndDerivative<T>
AdamsFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.ODEStateAndDerivative
AdamsIntegrator. integrate(ExpandableODE equations, ODEState initialState, double finalTime)
Integrate the differential equations up to the given time.FieldODEStateAndDerivative<T>
EmbeddedRungeKuttaFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.ODEStateAndDerivative
EmbeddedRungeKuttaIntegrator. integrate(ExpandableODE equations, ODEState initialState, double finalTime)
Integrate the differential equations up to the given time.ODEStateAndDerivative
GraggBulirschStoerIntegrator. integrate(ExpandableODE equations, ODEState initialState, double finalTime)
Integrate the differential equations up to the given time.FieldODEStateAndDerivative<T>
RungeKuttaFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.ODEStateAndDerivative
RungeKuttaIntegrator. integrate(ExpandableODE equations, ODEState initialState, double finalTime)
Integrate the differential equations up to the given time. -
Uses of MathIllegalStateException in org.hipparchus.ode.sampling
Methods in org.hipparchus.ode.sampling that throw MathIllegalStateException Modifier and Type Method Description protected abstract FieldODEStateAndDerivative<T>
AbstractFieldODEStateInterpolator. computeInterpolatedStateAndDerivatives(FieldEquationsMapper<T> equationsMapper, T time, T theta, T thetaH, T oneMinusThetaH)
Compute the state and derivatives at the interpolated time.protected abstract ODEStateAndDerivative
AbstractODEStateInterpolator. computeInterpolatedStateAndDerivatives(EquationsMapper equationsMapper, double time, double theta, double thetaH, double oneMinusThetaH)
Compute the state and derivatives at the interpolated time. -
Uses of MathIllegalStateException in org.hipparchus.optim
Methods in org.hipparchus.optim that throw MathIllegalStateException Modifier and Type Method Description protected void
BaseOptimizer. incrementEvaluationCount()
Increment the evaluation count.protected void
BaseOptimizer. incrementIterationCount()
Increment the iteration count.P
BaseOptimizer. optimize()
Performs the optimization.P
BaseOptimizer. optimize(OptimizationData... optData)
Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.linear
Methods in org.hipparchus.optim.linear that throw MathIllegalStateException Modifier and Type Method Description protected void
SimplexSolver. doIteration(org.hipparchus.optim.linear.SimplexTableau tableau)
Runs one iteration of the Simplex method on the given model.PointValuePair
SimplexSolver. doOptimize()
Performs the bulk of the optimization algorithm.PointValuePair
LinearOptimizer. optimize(OptimizationData... optData)
Stores data and performs the optimization.PointValuePair
SimplexSolver. optimize(OptimizationData... optData)
Stores data and performs the optimization.protected void
SimplexSolver. solvePhase1(org.hipparchus.optim.linear.SimplexTableau tableau)
Solves Phase 1 of the Simplex method. -
Uses of MathIllegalStateException in org.hipparchus.optim.nonlinear.scalar
Methods in org.hipparchus.optim.nonlinear.scalar that throw MathIllegalStateException Modifier and Type Method Description PointValuePair
GradientMultivariateOptimizer. optimize(OptimizationData... optData)
Stores data and performs the optimization.PointValuePair
MultivariateOptimizer. optimize(OptimizationData... optData)
Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.nonlinear.scalar.gradient
Methods in org.hipparchus.optim.nonlinear.scalar.gradient that throw MathIllegalStateException Modifier and Type Method Description PointValuePair
NonLinearConjugateGradientOptimizer. optimize(OptimizationData... optData)
Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.nonlinear.scalar.noderiv
Methods in org.hipparchus.optim.nonlinear.scalar.noderiv that throw MathIllegalStateException Modifier and Type Method Description PointValuePair
CMAESOptimizer. optimize(OptimizationData... optData)
Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.univariate
Methods in org.hipparchus.optim.univariate that throw MathIllegalStateException Modifier and Type Method Description UnivariatePointValuePair
UnivariateOptimizer. optimize(OptimizationData... optData)
Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.random
Constructors in org.hipparchus.random that throw MathIllegalStateException Constructor Description SobolSequenceGenerator(int dimension, InputStream is)
Construct a new Sobol sequence generator for the given space dimension with direction vectors loaded from the given stream. -
Uses of MathIllegalStateException in org.hipparchus.special
Methods in org.hipparchus.special that throw MathIllegalStateException Modifier and Type Method Description double
BesselJ. value(double x)
Returns the value of the constructed Bessel function of the first kind, for the passed argument.static double
BesselJ. value(double order, double x)
Returns the first Bessel function, \(J_{order}(x)\). -
Uses of MathIllegalStateException in org.hipparchus.stat.descriptive
Methods in org.hipparchus.stat.descriptive that throw MathIllegalStateException Modifier and Type Method Description void
DescriptiveStatistics. removeMostRecentValue()
Removes the most recent value from the dataset.double
DescriptiveStatistics. replaceMostRecentValue(double v)
Replaces the most recently stored value with the given value. -
Uses of MathIllegalStateException in org.hipparchus.stat.fitting
Methods in org.hipparchus.stat.fitting that throw MathIllegalStateException Modifier and Type Method Description double
EmpiricalDistribution. getNextValue()
Generates a random value from this distribution. -
Uses of MathIllegalStateException in org.hipparchus.stat.inference
Methods in org.hipparchus.stat.inference that throw MathIllegalStateException Modifier and Type Method Description double
OneWayAnova. anovaPValue(Collection<double[]> categoryData)
Computes the ANOVA P-value for a collection ofdouble[]
arrays.double
OneWayAnova. anovaPValue(Collection<StreamingStatistics> categoryData, boolean allowOneElementData)
Computes the ANOVA P-value for a collection ofStreamingStatistics
.boolean
OneWayAnova. anovaTest(Collection<double[]> categoryData, double alpha)
Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.double
ChiSquareTest. chiSquareTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobserved
frequency counts to those in theexpected
array.boolean
ChiSquareTest. chiSquareTest(double[] expected, long[] observed, double alpha)
Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.double
ChiSquareTest. chiSquareTest(long[][] counts)
Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcounts
array, viewed as a two-way table.boolean
ChiSquareTest. chiSquareTest(long[][] counts, double alpha)
Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha
.static double
InferenceTestUtils. chiSquareTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobserved
frequency counts to those in theexpected
array.static boolean
InferenceTestUtils. chiSquareTest(double[] expected, long[] observed, double alpha)
Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.static double
InferenceTestUtils. chiSquareTest(long[][] counts)
Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcounts
array, viewed as a two-way table.static boolean
InferenceTestUtils. chiSquareTest(long[][] counts, double alpha)
Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha
.double
ChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1
andobserved2
.boolean
ChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
Performs a Chi-Square two sample test comparing two binned data sets.static double
InferenceTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1
andobserved2
.static boolean
InferenceTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
Performs a Chi-Square two sample test comparing two binned data sets.double
GTest. gTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobserved
frequency counts to those in theexpected
array.boolean
GTest. gTest(double[] expected, long[] observed, double alpha)
Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.static double
InferenceTestUtils. gTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobserved
frequency counts to those in theexpected
array.static boolean
InferenceTestUtils. gTest(double[] expected, long[] observed, double alpha)
Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.double
GTest. gTestDataSetsComparison(long[] observed1, long[] observed2)
Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts inobserved1
andobserved2
.boolean
GTest. gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.static double
InferenceTestUtils. gTestDataSetsComparison(long[] observed1, long[] observed2)
Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts inobserved1
andobserved2
.static boolean
InferenceTestUtils. gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.double
GTest. gTestIntrinsic(double[] expected, long[] observed)
Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H. 2009.static double
InferenceTestUtils. gTestIntrinsic(double[] expected, long[] observed)
Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H. 2009.static double
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.static boolean
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
, assuming that the subpopulation variances are equal.static double
InferenceTestUtils. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.double
TTest. homoscedasticTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.boolean
TTest. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
, assuming that the subpopulation variances are equal.protected double
TTest. homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2)
Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.double
TTest. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.static double
InferenceTestUtils. oneWayAnovaPValue(Collection<double[]> categoryData)
Computes the ANOVA P-value for a collection ofdouble[]
arrays.static boolean
InferenceTestUtils. oneWayAnovaTest(Collection<double[]> categoryData, double alpha)
Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.static double
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.static boolean
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2, double alpha)
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1
andsample2
is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha
.double
TTest. pairedTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.boolean
TTest. pairedTTest(double[] sample1, double[] sample2, double alpha)
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1
andsample2
is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha
.static double
InferenceTestUtils. tTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.static boolean
InferenceTestUtils. tTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
.static double
InferenceTestUtils. tTest(double mu, double[] sample)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu
.static boolean
InferenceTestUtils. tTest(double mu, double[] sample, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsample
is drawn equalsmu
.static double
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStats
with the constantmu
.static boolean
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystats
is drawn equalsmu
.static double
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.static boolean
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1
andsampleStats2
describe datasets drawn from populations with the same mean, with significance levelalpha
.double
TTest. tTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.boolean
TTest. tTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
.double
TTest. tTest(double mu, double[] sample)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu
.boolean
TTest. tTest(double mu, double[] sample, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsample
is drawn equalsmu
.protected double
TTest. tTest(double m, double mu, double v, double n)
Computes p-value for 2-sided, 1-sample t-test.protected double
TTest. tTest(double m1, double m2, double v1, double v2, double n1, double n2)
Computes p-value for 2-sided, 2-sample t-test.double
TTest. tTest(double mu, StatisticalSummary sampleStats)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStats
with the constantmu
.boolean
TTest. tTest(double mu, StatisticalSummary sampleStats, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystats
is drawn equalsmu
.double
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.boolean
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1
andsampleStats2
describe datasets drawn from populations with the same mean, with significance levelalpha
.double
WilcoxonSignedRankTest. wilcoxonSignedRankTest(double[] x, double[] y, boolean exactPValue)
Returns the observed significance level, or p-value, associated with a Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample. -
Uses of MathIllegalStateException in org.hipparchus.util
Methods in org.hipparchus.util that throw MathIllegalStateException Modifier and Type Method Description double
ContinuedFraction. evaluate(double x)
Evaluates the continued fraction at the value x.double
ContinuedFraction. evaluate(double x, double epsilon)
Evaluates the continued fraction at the value x.double
ContinuedFraction. evaluate(double x, double epsilon, int maxIterations)
Evaluates the continued fraction at the value x.double
ContinuedFraction. evaluate(double x, int maxIterations)
Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x)
Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, double epsilon)
Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, double epsilon, int maxIterations)
Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction. evaluate(T x, int maxIterations)
Evaluates the continued fraction at the value x.void
IterationManager. incrementIterationCount()
Increments the iteration count by one, and throws an exception if the maximum number of iterations is reached.double
ResizableDoubleArray. substituteMostRecentElement(double value)
Substitutesvalue
for the most recently added value.void
Incrementor.MaxCountExceededCallback. trigger(int maximalCount)
Function called when the maximal count has been reached.
-