Class RungeKuttaIntegrator
- java.lang.Object
-
- org.hipparchus.ode.AbstractIntegrator
-
- org.hipparchus.ode.nonstiff.RungeKuttaIntegrator
-
- All Implemented Interfaces:
ButcherArrayProvider
,ODEIntegrator
- Direct Known Subclasses:
ClassicalRungeKuttaIntegrator
,EulerIntegrator
,GillIntegrator
,LutherIntegrator
,MidpointIntegrator
,ThreeEighthesIntegrator
public abstract class RungeKuttaIntegrator extends AbstractIntegrator implements ButcherArrayProvider
This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.These methods are explicit Runge-Kutta methods, their Butcher arrays are as follows :
0 | c2 | a21 c3 | a31 a32 ... | ... cs | as1 as2 ... ass-1 |-------------------------- | b1 b2 ... bs-1 bs
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
RungeKuttaIntegrator(String name, double step)
Simple constructor.
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description protected abstract org.hipparchus.ode.nonstiff.RungeKuttaStateInterpolator
createInterpolator(boolean forward, double[][] yDotK, ODEStateAndDerivative globalPreviousState, ODEStateAndDerivative globalCurrentState, EquationsMapper mapper)
Create an interpolator.double
getDefaultStep()
Getter for the default, positive step-size assigned at constructor level.ODEStateAndDerivative
integrate(ExpandableODE equations, ODEState initialState, double finalTime)
Integrate the differential equations up to the given time.double[]
singleStep(OrdinaryDifferentialEquation equations, double t0, double[] y0, double t)
Fast computation of a single step of ODE integration.-
Methods inherited from class org.hipparchus.ode.AbstractIntegrator
acceptStep, addEventDetector, addStepEndHandler, addStepHandler, clearEventDetectors, clearStepEndHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getEquations, getEvaluations, getEvaluationsCounter, getEventDetectors, getMaxEvaluations, getName, getStepEndHandlers, getStepHandlers, getStepSize, getStepStart, initIntegration, isLastStep, resetOccurred, sanityChecks, setIsLastStep, setMaxEvaluations, setStateInitialized, setStepSize, setStepStart
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.ode.nonstiff.ButcherArrayProvider
getA, getB, getC
-
Methods inherited from interface org.hipparchus.ode.ODEIntegrator
integrate
-
-
-
-
Constructor Detail
-
RungeKuttaIntegrator
protected RungeKuttaIntegrator(String name, double step)
Simple constructor. Build a Runge-Kutta integrator with the given step. The default step handler does nothing.- Parameters:
name
- name of the methodstep
- integration step
-
-
Method Detail
-
getDefaultStep
public double getDefaultStep()
Getter for the default, positive step-size assigned at constructor level.- Returns:
- step
-
createInterpolator
protected abstract org.hipparchus.ode.nonstiff.RungeKuttaStateInterpolator createInterpolator(boolean forward, double[][] yDotK, ODEStateAndDerivative globalPreviousState, ODEStateAndDerivative globalCurrentState, EquationsMapper mapper)
Create an interpolator.- Parameters:
forward
- integration direction indicatoryDotK
- slopes at the intermediate pointsglobalPreviousState
- start of the global stepglobalCurrentState
- end of the global stepmapper
- equations mapper for the all equations- Returns:
- external weights for the high order method from Butcher array
-
integrate
public ODEStateAndDerivative integrate(ExpandableODE equations, ODEState initialState, double finalTime) throws MathIllegalArgumentException, MathIllegalStateException
Integrate the differential equations up to the given time.This method solves an Initial Value Problem (IVP).
Since this method stores some internal state variables made available in its public interface during integration (
ODEIntegrator.getCurrentSignedStepsize()
), it is not thread-safe.- Specified by:
integrate
in interfaceODEIntegrator
- Parameters:
equations
- differential equations to integrateinitialState
- initial state (time, primary and secondary state vectors)finalTime
- target time for the integration (can be set to a value smaller thant0
for backward integration)- Returns:
- final state, its time will be the same as
finalTime
if integration reached its target, but may be different if someODEEventHandler
stops it at some point. - Throws:
MathIllegalArgumentException
- if integration step is too smallMathIllegalStateException
- if the number of functions evaluations is exceeded
-
singleStep
public double[] singleStep(OrdinaryDifferentialEquation equations, double t0, double[] y0, double t)
Fast computation of a single step of ODE integration.This method is intended for the limited use case of very fast computation of only one step without using any of the rich features of general integrators that may take some time to set up (i.e. no step handlers, no events handlers, no additional states, no interpolators, no error control, no evaluations count, no sanity checks ...). It handles the strict minimum of computation, so it can be embedded in outer loops.
This method is not used at all by the
integrate(ExpandableODE, ODEState, double)
method. It also completely ignores the step set at construction time, and uses only a single step to go fromt0
tot
.As this method does not use any of the state-dependent features of the integrator, it should be reasonably thread-safe if and only if the provided differential equations are themselves thread-safe.
- Parameters:
equations
- differential equations to integratet0
- initial timey0
- initial value of the state vector at t0t
- target time for the integration (can be set to a value smaller thant0
for backward integration)- Returns:
- state vector at
t
-
-