The following document contains the results of PMD's CPD 6.55.0.
Duplications
File |
Line |
org/hipparchus/optim/nonlinear/vector/leastsquares/GaussNewtonOptimizer.java |
206 |
org/hipparchus/optim/nonlinear/vector/leastsquares/SequentialGaussNewtonOptimizer.java |
373 |
", formNormalEquations=" + formNormalEquations +
'}';
}
/**
* Compute the normal matrix, J<sup>T</sup>J.
*
* @param jacobian the m by n jacobian matrix, J. Input.
* @param residuals the m by 1 residual vector, r. Input.
* @return the n by n normal matrix and the n by 1 J<sup>Tr vector.
*/
private static Pair<RealMatrix, RealVector> computeNormalMatrix(final RealMatrix jacobian,
final RealVector residuals) {
//since the normal matrix is symmetric, we only need to compute half of it.
final int nR = jacobian.getRowDimension();
final int nC = jacobian.getColumnDimension();
//allocate space for return values
final RealMatrix normal = MatrixUtils.createRealMatrix(nC, nC);
final RealVector jTr = new ArrayRealVector(nC);
//for each measurement
for (int i = 0; i < nR; ++i) {
//compute JTr for measurement i
for (int j = 0; j < nC; j++) {
jTr.setEntry(j, jTr.getEntry(j) +
residuals.getEntry(i) * jacobian.getEntry(i, j));
}
// add the the contribution to the normal matrix for measurement i
for (int k = 0; k < nC; ++k) {
//only compute the upper triangular part
for (int l = k; l < nC; ++l) {
normal.setEntry(k, l, normal.getEntry(k, l) +
jacobian.getEntry(i, k) * jacobian.getEntry(i, l));
}
}
}
//copy the upper triangular part to the lower triangular part.
for (int i = 0; i < nC; i++) {
for (int j = 0; j < i; j++) {
normal.setEntry(i, j, normal.getEntry(j, i));
}
}
return new Pair<RealMatrix, RealVector>(normal, jTr);
}
|
File |
Line |
org/hipparchus/optim/linear/LinearConstraint.java |
199 |
org/hipparchus/optim/linear/LinearObjectiveFunction.java |
130 |
Double.valueOf(value).hashCode() ^
coefficients.hashCode();
}
/**
* Serialize the instance.
* @param oos stream where object should be written
* @throws IOException if object cannot be written to stream
*/
private void writeObject(ObjectOutputStream oos)
throws IOException {
oos.defaultWriteObject();
final int n = coefficients.getDimension();
oos.writeInt(n);
for (int i = 0; i < n; ++i) {
oos.writeDouble(coefficients.getEntry(i));
}
}
/**
* Deserialize the instance.
* @param ois stream from which the object should be read
* @throws ClassNotFoundException if a class in the stream cannot be found
* @throws IOException if object cannot be read from the stream
*/
private void readObject(ObjectInputStream ois)
throws ClassNotFoundException, IOException {
ois.defaultReadObject();
// read the vector data
final int n = ois.readInt();
final double[] data = new double[n];
for (int i = 0; i < n; ++i) {
data[i] = ois.readDouble();
}
try {
// create the instance
ArrayRealVector vector = new ArrayRealVector(data, false);
final java.lang.reflect.Field f = getClass().getDeclaredField("coefficients");
f.setAccessible(true); // NOPMD
f.set(this, vector);
} catch (NoSuchFieldException | IllegalArgumentException | IllegalAccessException e) {
IOException ioe = new IOException();
ioe.initCause(e);
throw ioe;
}
}
}
|
File |
Line |
org/hipparchus/optim/nonlinear/vector/constrained/SQPOptimizerS.java |
175 |
org/hipparchus/optim/nonlinear/vector/constrained/SQPOptimizerS.java |
217 |
while ((alfaPenalty - currentPenalty) >= getSettings().getMu() * alpha * currentPenaltyGrad &&
search < getSettings().getMaxLineSearchIteration()) {
double alfaStar = -0.5 * alpha * alpha * currentPenaltyGrad / (-alpha * currentPenaltyGrad + alfaPenalty - currentPenalty);
alpha = FastMath.max(getSettings().getB() * alpha, FastMath.min(1.0, alfaStar));
alphaF = this.getObj().value(x.add(dx.mapMultiply(alpha)));
alfaPenalty = penaltyFunction(alphaF, alpha, x, y, dx, dy.subtract(y), r);
search = search + 1;
}
|
File |
Line |
org/hipparchus/optim/nonlinear/vector/constrained/SQPOptimizerGM.java |
443 |
org/hipparchus/optim/nonlinear/vector/constrained/SQPOptimizerS.java |
659 |
RealVector y = y1.mapMultiply(theta).add(oldH.operate(s).mapMultiply(1.0 - theta));
RealMatrix firstTerm = y.outerProduct(y).scalarMultiply(1.0 / s.dotProduct(y));
RealMatrix secondTerm = oldH1.multiply(s.outerProduct(s)).multiply(oldH);
double thirtTerm = s.dotProduct(oldH1.operate(s));
RealMatrix Hnew = oldH1.add(firstTerm).subtract(secondTerm.scalarMultiply(1.0 / thirtTerm));
//RESET HESSIAN IF NOT POSITIVE DEFINITE
EigenDecompositionSymmetric dsX = new EigenDecompositionSymmetric(Hnew);
double min = new ArrayRealVector(dsX.getEigenvalues()).getMinValue();
if (new ArrayRealVector(dsX.getEigenvalues()).getMinValue() < 0) {
|