1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.stat.descriptive; 23 24 import org.hipparchus.linear.RealMatrix; 25 26 /** 27 * Reporting interface for basic multivariate statistics. 28 */ 29 public interface StatisticalMultivariateSummary { 30 31 /** 32 * Returns the dimension of the data 33 * @return The dimension of the data 34 */ 35 int getDimension(); 36 37 /** 38 * Returns an array whose i<sup>th</sup> entry is the 39 * mean of the i<sup>th</sup> entries of the arrays 40 * that correspond to each multivariate sample 41 * 42 * @return the array of component means 43 */ 44 double[] getMean(); 45 46 /** 47 * Returns the covariance of the available values. 48 * @return The covariance, null if no multivariate sample 49 * have been added or a zeroed matrix for a single value set. 50 */ 51 RealMatrix getCovariance(); 52 53 /** 54 * Returns an array whose i<sup>th</sup> entry is the 55 * standard deviation of the i<sup>th</sup> entries of the arrays 56 * that correspond to each multivariate sample 57 * 58 * @return the array of component standard deviations 59 */ 60 double[] getStandardDeviation(); 61 62 /** 63 * Returns an array whose i<sup>th</sup> entry is the 64 * maximum of the i<sup>th</sup> entries of the arrays 65 * that correspond to each multivariate sample 66 * 67 * @return the array of component maxima 68 */ 69 double[] getMax(); 70 71 /** 72 * Returns an array whose i<sup>th</sup> entry is the 73 * minimum of the i<sup>th</sup> entries of the arrays 74 * that correspond to each multivariate sample 75 * 76 * @return the array of component minima 77 */ 78 double[] getMin(); 79 80 /** 81 * Returns the number of available values 82 * @return The number of available values 83 */ 84 long getN(); 85 86 /** 87 * Returns an array whose i<sup>th</sup> entry is the 88 * geometric mean of the i<sup>th</sup> entries of the arrays 89 * that correspond to each multivariate sample 90 * 91 * @return the array of component geometric means 92 */ 93 double[] getGeometricMean(); 94 95 /** 96 * Returns an array whose i<sup>th</sup> entry is the 97 * sum of the i<sup>th</sup> entries of the arrays 98 * that correspond to each multivariate sample 99 * 100 * @return the array of component sums 101 */ 102 double[] getSum(); 103 104 /** 105 * Returns an array whose i<sup>th</sup> entry is the 106 * sum of squares of the i<sup>th</sup> entries of the arrays 107 * that correspond to each multivariate sample 108 * 109 * @return the array of component sums of squares 110 */ 111 double[] getSumSq(); 112 113 /** 114 * Returns an array whose i<sup>th</sup> entry is the 115 * sum of logs of the i<sup>th</sup> entries of the arrays 116 * that correspond to each multivariate sample 117 * 118 * @return the array of component log sums 119 */ 120 double[] getSumLog(); 121 122 }