AbstractKalmanFilter.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.filtering.kalman;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.linear.MatrixDecomposer;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
/**
* Shared parts between linear and non-linear Kalman filters.
* @param <T> the type of the measurements
* @since 1.3
*/
public abstract class AbstractKalmanFilter<T extends Measurement> implements KalmanFilter<T> {
/** Decomposer decomposer to use for the correction phase. */
private final MatrixDecomposer decomposer;
/** Predicted state. */
private ProcessEstimate predicted;
/** Corrected state. */
private ProcessEstimate corrected;
/** Simple constructor.
* @param decomposer decomposer to use for the correction phase
* @param initialState initial state
*/
protected AbstractKalmanFilter(final MatrixDecomposer decomposer, final ProcessEstimate initialState) {
this.decomposer = decomposer;
this.corrected = initialState;
}
/** Perform prediction step.
* @param time process time
* @param predictedState predicted state vector
* @param stm state transition matrix
* @param noise process noise covariance matrix
*/
protected void predict(final double time, final RealVector predictedState, final RealMatrix stm, final RealMatrix noise) {
final RealMatrix predictedCovariance =
stm.multiply(corrected.getCovariance().multiplyTransposed(stm)).add(noise);
predicted = new ProcessEstimate(time, predictedState, predictedCovariance);
corrected = null;
}
/** Compute innovation covariance matrix.
* @param r measurement covariance
* @param h Jacobian of the measurement with respect to the state
* (may be null if measurement should be ignored)
* @return innovation covariance matrix, defined as \(h.P.h^T + r\), or
* null if h is null
*/
protected RealMatrix computeInnovationCovarianceMatrix(final RealMatrix r, final RealMatrix h) {
if (h == null) {
return null;
}
final RealMatrix phT = predicted.getCovariance().multiplyTransposed(h);
return h.multiply(phT).add(r);
}
/** Perform correction step.
* @param measurement single measurement to handle
* @param stm state transition matrix
* @param innovation innovation vector (i.e. residuals)
* (may be null if measurement should be ignored)
* @param h Jacobian of the measurement with respect to the state
* (may be null if measurement should be ignored)
* @param s innovation covariance matrix
* (may be null if measurement should be ignored)
* @exception MathIllegalArgumentException if matrix cannot be decomposed
*/
protected void correct(final T measurement, final RealMatrix stm, final RealVector innovation,
final RealMatrix h, final RealMatrix s)
throws MathIllegalArgumentException {
if (innovation == null) {
// measurement should be ignored
corrected = predicted;
return;
}
// compute Kalman gain k
// the following is equivalent to k = p.h^T * (h.p.h^T + r)^(-1)
// we don't want to compute the inverse of a matrix,
// we start by post-multiplying by h.p.h^T + r and get
// k.(h.p.h^T + r) = p.h^T
// then we transpose, knowing that both p and r are symmetric matrices
// (h.p.h^T + r).k^T = h.p
// then we can use linear system solving instead of matrix inversion
final RealMatrix k = decomposer.
decompose(s).
solve(h.multiply(predicted.getCovariance())).
transpose();
// correct state vector
final RealVector correctedState = predicted.getState().add(k.operate(innovation));
// here we use the Joseph algorithm (see "Fundamentals of Astrodynamics and Applications,
// Vallado, Fourth Edition ยง10.6 eq.10-34) which is equivalent to
// the traditional Pest = (I - k.h) x Ppred expression but guarantees the output stays symmetric:
// Pest = (I -k.h) Ppred (I - k.h)^T + k.r.k^T
final RealMatrix idMkh = k.multiply(h);
for (int i = 0; i < idMkh.getRowDimension(); ++i) {
for (int j = 0; j < idMkh.getColumnDimension(); ++j) {
idMkh.multiplyEntry(i, j, -1);
}
idMkh.addToEntry(i, i, 1.0);
}
final RealMatrix r = measurement.getCovariance();
final RealMatrix correctedCovariance =
idMkh.multiply(predicted.getCovariance()).multiplyTransposed(idMkh).
add(k.multiply(r).multiplyTransposed(k));
corrected = new ProcessEstimate(measurement.getTime(), correctedState, correctedCovariance,
stm, h, s, k);
}
/** Get the predicted state.
* @return predicted state
*/
@Override
public ProcessEstimate getPredicted() {
return predicted;
}
/** Get the corrected state.
* @return corrected state
*/
@Override
public ProcessEstimate getCorrected() {
return corrected;
}
}