Uses of Class
org.hipparchus.exception.NullArgumentException
-
Packages that use NullArgumentException Package Description org.hipparchus Common classes used throughout the Hipparchus library.org.hipparchus.analysis.function Thefunctionpackage contains function objects that wrap the methods contained inMath, as well as common mathematical functions such as the gaussian and sinc functions.org.hipparchus.analysis.integration Numerical integration (quadrature) algorithms for univariate real functions.org.hipparchus.analysis.interpolation Univariate real functions interpolation algorithms.org.hipparchus.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.complex Complex number type and implementations of complex transcendental functions.org.hipparchus.fraction Fraction number type and fraction number formatting.org.hipparchus.linear Linear algebra support.org.hipparchus.random Random number and random data generators.org.hipparchus.util Convenience routines and common data structures used throughout the Hipparchus library. -
-
Uses of NullArgumentException in org.hipparchus
Methods in org.hipparchus that throw NullArgumentException Modifier and Type Method Description TFieldElement. add(T a)Compute this + a.TFieldElement. divide(T a)Compute this ÷ a.TFieldElement. multiply(T a)Compute this × a.TFieldElement. subtract(T a)Compute this - a. -
Uses of NullArgumentException in org.hipparchus.analysis.function
Methods in org.hipparchus.analysis.function that throw NullArgumentException Modifier and Type Method Description double[]Gaussian.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]HarmonicOscillator.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]Logistic.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]Logit.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]Sigmoid.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.doubleGaussian.Parametric. value(double x, double... param)Computes the value of the Gaussian atx.doubleHarmonicOscillator.Parametric. value(double x, double... param)Computes the value of the harmonic oscillator atx.doubleLogistic.Parametric. value(double x, double... param)Computes the value of the sigmoid atx.doubleLogit.Parametric. value(double x, double... param)Computes the value of the logit atx.doubleSigmoid.Parametric. value(double x, double... param)Computes the value of the sigmoid atx.Constructors in org.hipparchus.analysis.function that throw NullArgumentException Constructor Description StepFunction(double[] x, double[] y)Builds a step function from a list of arguments and the corresponding values. -
Uses of NullArgumentException in org.hipparchus.analysis.integration
Methods in org.hipparchus.analysis.integration that throw NullArgumentException Modifier and Type Method Description TBaseAbstractFieldUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<T> f, T lower, T upper)Integrate the function in the given interval.doubleBaseAbstractUnivariateIntegrator. integrate(int maxEval, UnivariateFunction f, double lower, double upper)Integrate the function in the given interval.TFieldUnivariateIntegrator. integrate(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max)Integrate the function in the given interval.doubleUnivariateIntegrator. integrate(int maxEval, UnivariateFunction f, double min, double max)Integrate the function in the given interval.protected voidBaseAbstractFieldUnivariateIntegrator. setup(int maxEval, CalculusFieldUnivariateFunction<T> f, T lower, T upper)Prepare for computation.protected voidBaseAbstractUnivariateIntegrator. setup(int maxEval, UnivariateFunction f, double lower, double upper)Prepare for computation. -
Uses of NullArgumentException in org.hipparchus.analysis.interpolation
Methods in org.hipparchus.analysis.interpolation that throw NullArgumentException Modifier and Type Method Description voidFieldHermiteInterpolator. addSamplePoint(T x, T[]... value)Add a sample point.T[][]FieldHermiteInterpolator. derivatives(T x, int order)Interpolate value and first derivatives at a specified abscissa.double[][]HermiteInterpolator. derivatives(double x, int order)Interpolate value and first derivatives at a specified abscissa.MultivariateFunctionMicrosphereProjectionInterpolator. interpolate(double[][] xval, double[] yval)Computes an interpolating function for the data set.MultivariateFunctionMultivariateInterpolator. interpolate(double[][] xval, double[] yval)Computes an interpolating function for the data set.PiecewiseBicubicSplineInterpolatingFunctionPiecewiseBicubicSplineInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)Compute an interpolating function for the dataset.T[]FieldHermiteInterpolator. value(T x)Interpolate value at a specified abscissa.Constructors in org.hipparchus.analysis.interpolation that throw NullArgumentException Constructor Description PiecewiseBicubicSplineInterpolatingFunction(double[] x, double[] y, double[][] f)Simple constructor. -
Uses of NullArgumentException in org.hipparchus.analysis.polynomials
Methods in org.hipparchus.analysis.polynomials that throw NullArgumentException Modifier and Type Method Description protected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction. differentiate(T[] coefficients)Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static double[]PolynomialFunction. differentiate(double[] coefficients)Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
TFieldPolynomialFunction. evaluate(T[] coefficients, T argument)Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.protected static doublePolynomialFunction. evaluate(double[] coefficients, double argument)Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.static doublePolynomialFunctionNewtonForm. evaluate(double[] a, double[] c, double z)Evaluate the Newton polynomial using nested multiplication.<T extends Derivative<T>>
TPolynomialFunction. value(T t)Compute the value for the function.<T extends CalculusFieldElement<T>>
TPolynomialFunction. value(T t)Compute the value of the function.protected static voidPolynomialFunctionNewtonForm. verifyInputArray(double[] a, double[] c)Verifies that the input arrays are valid.Constructors in org.hipparchus.analysis.polynomials that throw NullArgumentException Constructor Description FieldPolynomialFunction(T[] c)Construct a polynomial with the given coefficients.FieldPolynomialSplineFunction(T[] knots, FieldPolynomialFunction<T>[] polynomials)Construct a polynomial spline function with the given segment delimiters and interpolating polynomials.PolynomialFunction(double... c)Construct a polynomial with the given coefficients.PolynomialFunctionNewtonForm(double[] a, double[] c)Construct a Newton polynomial with the given a[] and c[].PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials)Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of NullArgumentException in org.hipparchus.analysis.solvers
Methods in org.hipparchus.analysis.solvers that throw NullArgumentException Modifier and Type Method Description static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils. bracket(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static double[]UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static double[]UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound, int maximumIterations)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static booleanUnivariateSolverUtils. isBracketing(UnivariateFunction function, double lower, double upper)Check whether the interval bounds bracket a root.protected voidBaseAbstractUnivariateSolver. setup(int maxEval, F f, double min, double max, double startValue)Prepare for computation.TFieldBracketingNthOrderBrentSolver. solve(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max, AllowedSolution allowedSolution)Solve for a zero in the given interval.TFieldBracketingNthOrderBrentSolver. solve(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max, T startValue, AllowedSolution allowedSolution)Solve for a zero in the given interval, start atstartValue.static doubleUnivariateSolverUtils. solve(UnivariateFunction function, double x0, double x1)Convenience method to find a zero of a univariate real function.static doubleUnivariateSolverUtils. solve(UnivariateFunction function, double x0, double x1, double absoluteAccuracy)Convenience method to find a zero of a univariate real function.Complex[]LaguerreSolver. solveAllComplex(double[] coefficients, double initial)Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.Complex[]LaguerreSolver. solveAllComplex(double[] coefficients, int maxEval, double initial)Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.ComplexLaguerreSolver. solveComplex(double[] coefficients, double initial)Find a complex root for the polynomial with the given coefficients, starting from the given initial value.protected voidBaseAbstractUnivariateSolver. verifyBracketing(double lower, double upper)Check that the endpoints specify an interval and the function takes opposite signs at the endpoints.static voidUnivariateSolverUtils. verifyBracketing(UnivariateFunction function, double lower, double upper)Check that the endpoints specify an interval and the end points bracket a root. -
Uses of NullArgumentException in org.hipparchus.complex
Methods in org.hipparchus.complex that throw NullArgumentException Modifier and Type Method Description ComplexComplex. add(Complex addend)Returns aComplexwhose value is(this + addend).FieldComplex<T>FieldComplex. add(FieldComplex<T> addend)Returns aComplexwhose value is(this + addend).ComplexComplex. divide(Complex divisor)Returns aComplexwhose value is(this / divisor).FieldComplex<T>FieldComplex. divide(FieldComplex<T> divisor)Returns aComplexwhose value is(this / divisor).static ComplexFormatComplexFormat. getComplexFormat(String imaginaryCharacter, Locale locale)Returns the default complex format for the given locale.ComplexComplex. multiply(Complex factor)Returns aComplexwhose value isthis * factor.FieldComplex<T>FieldComplex. multiply(FieldComplex<T> factor)Returns aComplexwhose value isthis * factor.ComplexComplex. pow(Complex x)Returns of value of this complex number raised to the power ofx.FieldComplex<T>FieldComplex. pow(FieldComplex<T> x)Returns of value of this complex number raised to the power ofx.ComplexComplex. subtract(Complex subtrahend)Returns aComplexwhose value is(this - subtrahend).FieldComplex<T>FieldComplex. subtract(FieldComplex<T> subtrahend)Returns aComplexwhose value is(this - subtrahend).Constructors in org.hipparchus.complex that throw NullArgumentException Constructor Description ComplexFormat(String imaginaryCharacter)Create an instance with a custom imaginary character, and the default number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat format)Create an instance with a custom imaginary character, and a custom number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat realFormat, NumberFormat imaginaryFormat)Create an instance with a custom imaginary character, a custom number format for the real part, and a custom number format for the imaginary part.ComplexFormat(NumberFormat format)Create an instance with a custom number format for both real and imaginary parts.ComplexFormat(NumberFormat realFormat, NumberFormat imaginaryFormat)Create an instance with a custom number format for the real part and a custom number format for the imaginary part. -
Uses of NullArgumentException in org.hipparchus.fraction
Methods in org.hipparchus.fraction that throw NullArgumentException Modifier and Type Method Description BigFractionBigFraction. add(BigInteger bg)Adds the value of this fraction to the passedBigInteger, returning the result in reduced form. -
Uses of NullArgumentException in org.hipparchus.linear
Methods in org.hipparchus.linear that throw NullArgumentException Modifier and Type Method Description FieldVector<T>SparseFieldVector. append(T d)Construct a vector by appending a T to this vector.protected static voidIterativeLinearSolver. checkParameters(RealLinearOperator a, RealVector b, RealVector x0)Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected static voidPreconditionedIterativeLinearSolver. checkParameters(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected voidAbstractFieldMatrix. checkSubMatrixIndex(int[] selectedRows, int[] selectedColumns)Check if submatrix ranges indices are valid.static voidMatrixUtils. checkSubMatrixIndex(AnyMatrix m, int[] selectedRows, int[] selectedColumns)Check if submatrix ranges indices are valid.voidAbstractFieldMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination)Copy a submatrix.voidAbstractRealMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination)Copy a submatrix.voidFieldMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination)Copy a submatrix.voidRealMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination)Copy a submatrix.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createColumnFieldMatrix(T[] columnData)Creates a columnFieldMatrixusing the data from the input array.static RealMatrixMatrixUtils. createColumnRealMatrix(double[] columnData)Creates a columnRealMatrixusing the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createFieldMatrix(T[][] data)Returns aFieldMatrixwhose entries are the the values in the the input array.static <T extends FieldElement<T>>
FieldVector<T>MatrixUtils. createFieldVector(T[] data)Creates aFieldVectorusing the data from the input array.static RealMatrixMatrixUtils. createRealMatrix(double[][] data)Returns aRealMatrixwhose entries are the the values in the the input array.static RealVectorMatrixUtils. createRealVector(double[] data)Creates aRealVectorusing the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createRowFieldMatrix(T[] rowData)Create a rowFieldMatrixusing the data from the input array.static RealMatrixMatrixUtils. createRowRealMatrix(double[] rowData)Create a rowRealMatrixusing the data from the input array.protected static <T extends FieldElement<T>>
Field<T>AbstractFieldMatrix. extractField(T[][] d)Get the elements type from an array.FieldMatrix<T>AbstractFieldMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Get a submatrix.RealMatrixAbstractRealMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Gets a submatrix.FieldMatrix<T>FieldMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Get a submatrix.RealMatrixRealMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Gets a submatrix.static RealMatrixMatrixUtils. inverse(RealMatrix matrix)Computes the inverse of the given matrix.static RealMatrixMatrixUtils. inverse(RealMatrix matrix, double threshold)Computes the inverse of the given matrix.FieldVector<T>ArrayFieldVector. mapAdd(T d)Map an addition operation to each entry.FieldVector<T>FieldVector. mapAdd(T d)Map an addition operation to each entry.FieldVector<T>SparseFieldVector. mapAdd(T d)Map an addition operation to each entry.FieldVector<T>ArrayFieldVector. mapAddToSelf(T d)Map an addition operation to each entry.FieldVector<T>FieldVector. mapAddToSelf(T d)Map an addition operation to each entry.FieldVector<T>SparseFieldVector. mapAddToSelf(T d)Map an addition operation to each entry.FieldVector<T>ArrayFieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>FieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>SparseFieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>ArrayFieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>FieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>SparseFieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>ArrayFieldVector. mapMultiply(T d)Map a multiplication operation to each entry.FieldVector<T>FieldVector. mapMultiply(T d)Map a multiplication operation to each entry.FieldVector<T>SparseFieldVector. mapMultiply(T d)Map a multiplication operation to each entry.FieldVector<T>ArrayFieldVector. mapMultiplyToSelf(T d)Map a multiplication operation to each entry.FieldVector<T>FieldVector. mapMultiplyToSelf(T d)Map a multiplication operation to each entry.FieldVector<T>SparseFieldVector. mapMultiplyToSelf(T d)Map a multiplication operation to each entry.FieldVector<T>ArrayFieldVector. mapSubtract(T d)Map a subtraction operation to each entry.FieldVector<T>FieldVector. mapSubtract(T d)Map a subtraction operation to each entry.FieldVector<T>SparseFieldVector. mapSubtract(T d)Map a subtraction operation to each entry.FieldVector<T>ArrayFieldVector. mapSubtractToSelf(T d)Map a subtraction operation to each entry.FieldVector<T>FieldVector. mapSubtractToSelf(T d)Map a subtraction operation to each entry.FieldVector<T>SparseFieldVector. mapSubtractToSelf(T d)Map a subtraction operation to each entry.voidSparseFieldVector. setEntry(int index, T value)Set a single element.voidAbstractFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidAbstractRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidArray2DRowFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidArray2DRowRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidBlockFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidBlockRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.RealVectorIterativeLinearSolver. solve(RealLinearOperator a, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorIterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift)Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealVector b, boolean goodb, double shift)Returns the solution to the system (A - shift · I) · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.RealVectorConjugateGradient. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorPreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift)Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVectorSymmLQ. solveInPlace(RealLinearOperator a, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.Constructors in org.hipparchus.linear that throw NullArgumentException Constructor Description Array2DRowFieldMatrix(Field<T> field, T[][] d)Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(Field<T> field, T[][] d, boolean copyArray)Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d)Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d, boolean copyArray)Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowRealMatrix(double[][] d)Create a newRealMatrixusing the input array as the underlying data array.Array2DRowRealMatrix(double[][] d, boolean copyArray)Create a new RealMatrix using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d)Construct a vector from an array, copying the input array.ArrayFieldVector(Field<T> field, T[] d, boolean copyArray)Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d, int pos, int size)Construct a vector from part of a array.ArrayFieldVector(Field<T> field, T[] v1, T[] v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(ArrayFieldVector<T> v)Construct a vector from another vector, using a deep copy.ArrayFieldVector(ArrayFieldVector<T> v, boolean deep)Construct a vector from another vector.ArrayFieldVector(FieldVector<T> v)Construct a vector from another vector, using a deep copy.ArrayFieldVector(FieldVector<T> v1, FieldVector<T> v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(FieldVector<T> v1, T[] v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] d)Construct a vector from an array, copying the input array.ArrayFieldVector(T[] d, boolean copyArray)Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(T[] d, int pos, int size)Construct a vector from part of a array.ArrayFieldVector(T[] v1, FieldVector<T> v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] v1, T[] v2)Construct a vector by appending one vector to another vector.ArrayRealVector(double[] d, boolean copyArray)Create a new ArrayRealVector using the input array as the underlying data array.ArrayRealVector(double[] d, int pos, int size)Construct a vector from part of a array.ArrayRealVector(Double[] d, int pos, int size)Construct a vector from part of an array.ArrayRealVector(ArrayRealVector v)Construct a vector from another vector, using a deep copy.ArrayRealVector(RealVector v)Construct a vector from another vector, using a deep copy.ConjugateGradient(IterationManager manager, double delta, boolean check)Creates a new instance of this class, with default stopping criterion and custom iteration manager.DiagonalMatrix(double[] d, boolean copyArray)Creates a matrix using the input array as the underlying data.IterativeLinearSolver(IterationManager manager)Creates a new instance of this class, with custom iteration manager.PreconditionedIterativeLinearSolver(IterationManager manager)Creates a new instance of this class, with custom iteration manager.SparseFieldVector(Field<T> field, T[] values)Create from a Field array. -
Uses of NullArgumentException in org.hipparchus.random
Constructors in org.hipparchus.random that throw NullArgumentException Constructor Description HaltonSequenceGenerator(int dimension, int[] bases, int[] weights)Construct a new Halton sequence generator with the given base numbers and weights for each dimension.StableRandomGenerator(RandomGenerator generator, double alpha, double beta)Create a new generator. -
Uses of NullArgumentException in org.hipparchus.util
Methods in org.hipparchus.util that throw NullArgumentException Modifier and Type Method Description static voidMathUtils. checkNotNull(Object o)Checks that an object is not null.static voidMathUtils. checkNotNull(Object o, Localizable pattern, Object... args)Checks that an object is not null.static voidMathArrays. checkRectangular(long[][] in)Throws MathIllegalArgumentException if the input array is not rectangular.static double[]MathArrays. convolve(double[] x, double[] h)Calculates the convolution between two sequences.static voidMathArrays. sortInPlace(double[] x, double[]... yList)Sort an array in ascending order in place and perform the same reordering of entries on other arrays.static voidMathArrays. sortInPlace(double[] x, MathArrays.OrderDirection dir, double[]... yList)Sort an array in place and perform the same reordering of entries on other arrays.Constructors in org.hipparchus.util that throw NullArgumentException Constructor Description Incrementor(int max, Incrementor.MaxCountExceededCallback cb)Creates an Incrementor.KthSelector(PivotingStrategy pivotingStrategy)Constructor with specified pivoting strategyResizableDoubleArray(ResizableDoubleArray original)Copy constructor.
-