Class FieldPolynomialFunction<T extends CalculusFieldElement<T>>
java.lang.Object
org.hipparchus.analysis.polynomials.FieldPolynomialFunction<T>
- Type Parameters:
T
- the type of the field elements
- All Implemented Interfaces:
CalculusFieldUnivariateFunction<T>
- Direct Known Subclasses:
SmoothStepFactory.FieldSmoothStepFunction
public class FieldPolynomialFunction<T extends CalculusFieldElement<T>>
extends Object
implements CalculusFieldUnivariateFunction<T>
Immutable representation of a real polynomial function with real coefficients.
Horner's Method is used to evaluate the function.
- Since:
- 1.5
-
Constructor Summary
ConstructorDescriptionFieldPolynomialFunction
(T[] c) Construct a polynomial with the given coefficients. -
Method Summary
Modifier and TypeMethodDescriptionAdd a polynomial to the instance.Returns an anti-derivative of this polynomial, with 0 constant term.int
degree()
Returns the degree of the polynomial.protected static <T extends CalculusFieldElement<T>>
T[]differentiate
(T[] coefficients) Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
Tevaluate
(T[] coefficients, T argument) Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.T[]
Returns a copy of the coefficients array.getField()
Get theField
to which the instance belongs.integrate
(double lower, double upper) Returns the definite integral of this polymomial over the given interval.Returns the definite integral of this polymomial over the given interval.Multiply the instance by a polynomial.negate()
Negate the instance.Returns the derivative as aFieldPolynomialFunction
.Subtract a polynomial from the instance.value
(double x) Compute the value of the function for the given argument.Compute the value of the function for the given argument.
-
Constructor Details
-
FieldPolynomialFunction
Construct a polynomial with the given coefficients. The first element of the coefficients array is the constant term. Higher degree coefficients follow in sequence. The degree of the resulting polynomial is the index of the last non-null element of the array, or 0 if all elements are null.The constructor makes a copy of the input array and assigns the copy to the coefficients property.
- Parameters:
c
- Polynomial coefficients.- Throws:
NullArgumentException
- ifc
isnull
.MathIllegalArgumentException
- ifc
is empty.
-
-
Method Details
-
value
Compute the value of the function for the given argument.The value returned is
coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]
- Parameters:
x
- Argument for which the function value should be computed.- Returns:
- the value of the polynomial at the given point.
- See Also:
-
value
Compute the value of the function for the given argument.The value returned is
coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]
- Specified by:
value
in interfaceCalculusFieldUnivariateFunction<T extends CalculusFieldElement<T>>
- Parameters:
x
- Argument for which the function value should be computed.- Returns:
- the value of the polynomial at the given point.
- See Also:
-
getField
Get theField
to which the instance belongs.- Returns:
Field
to which the instance belongs
-
degree
public int degree()Returns the degree of the polynomial.- Returns:
- the degree of the polynomial.
-
getCoefficients
Returns a copy of the coefficients array.Changes made to the returned copy will not affect the coefficients of the polynomial.
- Returns:
- a fresh copy of the coefficients array.
-
evaluate
protected static <T extends CalculusFieldElement<T>> T evaluate(T[] coefficients, T argument) throws MathIllegalArgumentException, NullArgumentException Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.- Type Parameters:
T
- the type of the field elements- Parameters:
coefficients
- Coefficients of the polynomial to evaluate.argument
- Input value.- Returns:
- the value of the polynomial.
- Throws:
MathIllegalArgumentException
- ifcoefficients
is empty.NullArgumentException
- ifcoefficients
isnull
.
-
add
Add a polynomial to the instance.- Parameters:
p
- Polynomial to add.- Returns:
- a new polynomial which is the sum of the instance and
p
.
-
subtract
Subtract a polynomial from the instance.- Parameters:
p
- Polynomial to subtract.- Returns:
- a new polynomial which is the instance minus
p
.
-
negate
Negate the instance.- Returns:
- a new polynomial with all coefficients negated
-
multiply
Multiply the instance by a polynomial.- Parameters:
p
- Polynomial to multiply by.- Returns:
- a new polynomial equal to this times
p
-
differentiate
protected static <T extends CalculusFieldElement<T>> T[] differentiate(T[] coefficients) throws MathIllegalArgumentException, NullArgumentException Returns the coefficients of the derivative of the polynomial with the given coefficients.- Type Parameters:
T
- the type of the field elements- Parameters:
coefficients
- Coefficients of the polynomial to differentiate.- Returns:
- the coefficients of the derivative or
null
if coefficients has length 1. - Throws:
MathIllegalArgumentException
- ifcoefficients
is empty.NullArgumentException
- ifcoefficients
isnull
.
-
antiDerivative
Returns an anti-derivative of this polynomial, with 0 constant term.- Returns:
- a polynomial whose derivative has the same coefficients as this polynomial
-
integrate
Returns the definite integral of this polymomial over the given interval.[lower, upper] must describe a finite interval (neither can be infinite and lower must be less than or equal to upper).
- Parameters:
lower
- lower bound for the integrationupper
- upper bound for the integration- Returns:
- the integral of this polymomial over the given interval
- Throws:
MathIllegalArgumentException
- if the bounds do not describe a finite interval
-
integrate
Returns the definite integral of this polymomial over the given interval.[lower, upper] must describe a finite interval (neither can be infinite and lower must be less than or equal to upper).
- Parameters:
lower
- lower bound for the integrationupper
- upper bound for the integration- Returns:
- the integral of this polymomial over the given interval
- Throws:
MathIllegalArgumentException
- if the bounds do not describe a finite interval
-
polynomialDerivative
Returns the derivative as aFieldPolynomialFunction
.- Returns:
- the derivative polynomial.
-