Interface Derivative<T extends CalculusFieldElement<T>>

Type Parameters:
T - the type of the field elements
All Superinterfaces:
CalculusFieldElement<T>, DifferentialAlgebra, FieldElement<T>
All Known Subinterfaces:
Derivative1<T>
All Known Implementing Classes:
DerivativeStructure, Gradient, SparseGradient, UnivariateDerivative, UnivariateDerivative1, UnivariateDerivative2

public interface Derivative<T extends CalculusFieldElement<T>> extends CalculusFieldElement<T>, DifferentialAlgebra
Interface representing both the value and the differentials of a function.
Since:
1.7
  • Method Details

    • getReal

      default double getReal()
      Get the real value of the number.
      Specified by:
      getReal in interface FieldElement<T extends CalculusFieldElement<T>>
      Returns:
      real value
    • getValue

      double getValue()
      Get the value part of the function.
      Returns:
      value part of the value of the function
    • withValue

      default T withValue(double value)
      Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.

      This default implementation is there so that no API gets broken by the next release, which is not a major one. Custom inheritors should probably overwrite it.

      Parameters:
      value - zeroth-order derivative of new represented function
      Returns:
      new object with changed value
      Since:
      3.1
    • getPartialDerivative

      double getPartialDerivative(int... orders) throws MathIllegalArgumentException
      Get a partial derivative.
      Parameters:
      orders - derivation orders with respect to each variable (if all orders are 0, the value is returned)
      Returns:
      partial derivative
      Throws:
      MathIllegalArgumentException - if the numbers of variables does not match the instance
      MathIllegalArgumentException - if sum of derivation orders is larger than the instance limits
      See Also:
    • add

      default T add(double a)
      '+' operator.
      Specified by:
      add in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Parameters:
      a - right hand side parameter of the operator
      Returns:
      this+a
    • subtract

      default T subtract(double a)
      '-' operator.
      Specified by:
      subtract in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Parameters:
      a - right hand side parameter of the operator
      Returns:
      this-a
    • compose

      T compose(double... f) throws MathIllegalArgumentException
      Compute composition of the instance by a univariate function.
      Parameters:
      f - array of value and derivatives of the function at the current point (i.e. [f(getValue()), f'(getValue()), f''(getValue())...]).
      Returns:
      f(this)
      Throws:
      MathIllegalArgumentException - if the number of derivatives in the array is not equal to order + 1
    • log10

      default T log10()
      Base 10 logarithm.
      Specified by:
      log10 in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Returns:
      base 10 logarithm of the instance
    • pow

      default T pow(T e)
      Power operation.
      Specified by:
      pow in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Parameters:
      e - exponent
      Returns:
      thise
    • cosh

      default T cosh()
      Hyperbolic cosine operation.
      Specified by:
      cosh in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Returns:
      cosh(this)
    • sinh

      default T sinh()
      Hyperbolic sine operation.
      Specified by:
      sinh in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Returns:
      sinh(this)
    • acos

      default T acos()
      Arc cosine operation.
      Specified by:
      acos in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Returns:
      acos(this)
    • getExponent

      default int getExponent()
      Return the exponent of the instance, removing the bias.

      For double numbers of the form 2x, the unbiased exponent is exactly x.

      Specified by:
      getExponent in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Returns:
      exponent for the instance, without bias
    • remainder

      default T remainder(double a)
      IEEE remainder operator.
      Specified by:
      remainder in interface CalculusFieldElement<T extends CalculusFieldElement<T>>
      Parameters:
      a - right hand side parameter of the operator
      Returns:
      this - n × a where n is the closest integer to this/a