Uses of Interface
org.hipparchus.CalculusFieldElement
Package
Description
Parent package for common numerical analysis procedures, including root finding,
function interpolation and integration.
This package holds the main interfaces and basic building block classes
dealing with differentiation.
Numerical integration (quadrature) algorithms for univariate real functions.
Gauss family of quadrature schemes.
Univariate real functions interpolation algorithms.
Univariate real polynomials implementations, seen as differentiable
univariate real functions.
Root finding algorithms, for univariate real functions.
Complex number type and implementations of complex transcendental
functions.
Decimal floating point library for Java
Linear algebra support.
Implementations of special functions such as Beta and Gamma.
Implementations of Carlson elliptic integrals.
Implementations of Jacobi elliptic functions.
Implementations of Legendre elliptic integrals.
Convenience routines and common data structures used throughout the Hipparchus library.
-
Uses of CalculusFieldElement in org.hipparchus.analysis
Modifier and TypeInterfaceDescriptioninterface
CalculusFieldBivariateFunction<T extends CalculusFieldElement<T>>
An interface representing a bivariate field function.interface
CalculusFieldMultivariateFunction<T extends CalculusFieldElement<T>>
An interface representing a scalar multivariate function.interface
CalculusFieldMultivariateMatrixFunction<T extends CalculusFieldElement<T>>
An interface representing a matrix multivariate function.interface
CalculusFieldMultivariateVectorFunction<T extends CalculusFieldElement<T>>
An interface representing a vector multivariate function.interface
CalculusFieldUnivariateFunction<T extends CalculusFieldElement<T>>
An interface representing a univariate real function.interface
CalculusFieldUnivariateMatrixFunction<T extends CalculusFieldElement<T>>
An interface representing a univariate matrix function.interface
CalculusFieldUnivariateVectorFunction<T extends CalculusFieldElement<T>>
An interface representing a univariate vectorial function for any field type.Modifier and TypeMethodDescriptiondefault <T extends CalculusFieldElement<T>>
CalculusFieldBivariateFunction<T>FieldBivariateFunction.toCalculusFieldBivariateFunction
(Field<T> field) Convert to aCalculusFieldBivariateFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateFunction<T>FieldMultivariateFunction.toCalculusFieldMultivariateFunction
(Field<T> field) Convert to aCalculusFieldMultivariateFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateMatrixFunction<T>FieldMultivariateMatrixFunction.toCalculusFieldMultivariateMatrixFunction
(Field<T> field) Convert to aCalculusFieldMultivariateMatrixFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldMultivariateVectorFunction<T>FieldMultivariateVectorFunction.toCalculusFieldMultivariateVectorFunction
(Field<T> field) Convert to aCalculusFieldMultivariateVectorFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateFunction.toCalculusFieldUnivariateFunction
(Field<T> field) Convert to aCalculusFieldUnivariateFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateMatrixFunction<T>FieldUnivariateMatrixFunction.toCalculusFieldUnivariateMatrixFunction
(Field<T> field) Convert to aCalculusFieldUnivariateMatrixFunction
with a specific type.default <T extends CalculusFieldElement<T>>
CalculusFieldUnivariateVectorFunction<T>FieldUnivariateVectorFunction.toCalculusFieldUnivariateVectorFunction
(Field<T> field) Convert to aCalculusFieldUnivariateVectorFunction
with a specific type.<T extends CalculusFieldElement<T>>
TFieldBivariateFunction.value
(T x, T y) Compute the value for the function.<T extends CalculusFieldElement<T>>
TFieldMultivariateFunction.value
(T... x) Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction.value
(T... x) Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction.value
(T... x) Compute the value of the function.<T extends CalculusFieldElement<T>>
TFieldUnivariateFunction.value
(T x) Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldUnivariateMatrixFunction.value
(T x) Compute the value for the function.<T extends CalculusFieldElement<T>>
T[]FieldUnivariateVectorFunction.value
(T x) Compute the value for the function.Modifier and TypeMethodDescriptionT[][]
Compute the value of the function.T[]
Compute the value of the function.T[][]
Compute the value for the function.T[]
Compute the value for the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction.value
(T... x) Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction.value
(T... x) Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldUnivariateMatrixFunction.value
(T x) Compute the value for the function.<T extends CalculusFieldElement<T>>
T[]FieldUnivariateVectorFunction.value
(T x) Compute the value for the function.Modifier and TypeMethodDescriptionCompute the value of the function.T[][]
Compute the value of the function.T[]
Compute the value of the function.<T extends CalculusFieldElement<T>>
TFieldMultivariateFunction.value
(T... x) Compute the value of the function.<T extends CalculusFieldElement<T>>
T[][]FieldMultivariateMatrixFunction.value
(T... x) Compute the value of the function.<T extends CalculusFieldElement<T>>
T[]FieldMultivariateVectorFunction.value
(T... x) Compute the value of the function. -
Uses of CalculusFieldElement in org.hipparchus.analysis.differentiation
Modifier and TypeInterfaceDescriptioninterface
Derivative<T extends CalculusFieldElement<T>>
Interface representing both the value and the differentials of a function.interface
Derivative1<T extends CalculusFieldElement<T>>
Interface representing an object holding partial derivatives up to first order.class
FDSFactory<T extends CalculusFieldElement<T>>
Factory forFieldDerivativeStructure
.static class
FDSFactory.DerivativeField<T extends CalculusFieldElement<T>>
Field for {link FieldDerivativeStructure} instances.interface
FieldDerivative<S extends CalculusFieldElement<S>,
T extends FieldDerivative<S, T>> Interface representing both the value and the differentials of a function.interface
FieldDerivative1<S extends CalculusFieldElement<S>,
T extends FieldDerivative<S, T>> Interface representing a Field object holding partial derivatives up to first order.class
FieldDerivativeStructure<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldGradient<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldGradientField<T extends CalculusFieldElement<T>>
Field forGradient
instances.class
FieldTaylorMap<T extends CalculusFieldElement<T>>
Container for a Taylor map.class
FieldUnivariateDerivative<S extends CalculusFieldElement<S>,
T extends FieldUnivariateDerivative<S, T>> Abstract class representing both the value and the differentials of a function.class
FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative1Field<T extends CalculusFieldElement<T>>
Field forFieldUnivariateDerivative1
instances.class
FieldUnivariateDerivative2<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative2Field<T extends CalculusFieldElement<T>>
Field forFieldUnivariateDerivative2
instances.Modifier and TypeInterfaceDescriptioninterface
Derivative<T extends CalculusFieldElement<T>>
Interface representing both the value and the differentials of a function.interface
Derivative1<T extends CalculusFieldElement<T>>
Interface representing an object holding partial derivatives up to first order.interface
FieldDerivative<S extends CalculusFieldElement<S>,
T extends FieldDerivative<S, T>> Interface representing both the value and the differentials of a function.interface
FieldDerivative1<S extends CalculusFieldElement<S>,
T extends FieldDerivative<S, T>> Interface representing a Field object holding partial derivatives up to first order.Modifier and TypeClassDescriptionclass
Class representing both the value and the differentials of a function.class
FieldDerivativeStructure<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldGradient<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative<S extends CalculusFieldElement<S>,
T extends FieldUnivariateDerivative<S, T>> Abstract class representing both the value and the differentials of a function.class
FieldUnivariateDerivative1<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
FieldUnivariateDerivative2<T extends CalculusFieldElement<T>>
Class representing both the value and the differentials of a function.class
Class representing both the value and the differentials of a function.class
First derivative computation with large number of variables.class
UnivariateDerivative<T extends UnivariateDerivative<T>>
Abstract class representing both the value and the differentials of a function.class
Class representing both the value and the differentials of a function.class
Class representing both the value and the differentials of a function.Modifier and TypeMethodDescription<T extends CalculusFieldElement<T>>
voidDSCompiler.acos
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute arc cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.acosh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute inverse hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.add
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform addition of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.asin
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute arc sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.asinh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute inverse hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.atan
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.atan2
(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset) Compute two arguments arc tangent of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.atan2
(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) Two arguments arc tangent operation.<T extends CalculusFieldElement<T>>
voidDSCompiler.atanh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute inverse hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.compose
(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset) Compute composition of a derivative structure by a function.<T extends CalculusFieldElement<T>>
voidDSCompiler.compose
(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset) Compute composition of a derivative structure by a function.static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient.constant
(int freeParameters, T value) Build an instance corresponding to a constant value.<T extends CalculusFieldElement<T>>
voidDSCompiler.cos
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.cosh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.divide
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform division of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.exp
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute exponential of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.expm1
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute exp(x) - 1 of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldGradientField<T>Get the field for number of free parameters.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1Field<T>FieldUnivariateDerivative1Field.getUnivariateDerivative1Field
(Field<T> valueField) Get the univariate derivative field corresponding to a value field.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative2Field<T>FieldUnivariateDerivative2Field.getUnivariateDerivative2Field
(Field<T> valueField) Get the univariate derivative field corresponding to a value field.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.hypot
(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.log
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute natural logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.log10
(T[] operand, int operandOffset, T[] result, int resultOffset) Computes base 10 logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.log1p
(T[] operand, int operandOffset, T[] result, int resultOffset) Computes shifted logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.multiply
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform multiplication of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(double a, T[] operand, int operandOffset, T[] result, int resultOffset) Compute power of a double to a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(T[] operand, int operandOffset, double p, T[] result, int resultOffset) Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(T[] operand, int operandOffset, int n, T[] result, int resultOffset) Compute integer power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset) Compute power of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.pow
(double a, FieldDerivativeStructure<T> x) Compute ax where a is a double and x aFieldDerivativeStructure
static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient.pow
(double a, FieldGradient<T> x) Compute ax where a is a double and x aFieldGradient
static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1<T>FieldUnivariateDerivative1.pow
(double a, FieldUnivariateDerivative1<T> x) Compute ax where a is a double and x aFieldUnivariateDerivative1
static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative2<T>FieldUnivariateDerivative2.pow
(double a, FieldUnivariateDerivative2<T> x) Compute ax where a is a double and x aFieldUnivariateDerivative2
<T extends CalculusFieldElement<T>>
voidDSCompiler.rebase
(T[] ds, int dsOffset, DSCompiler baseCompiler, T[] p, T[] result, int resultOffset) Rebase derivative structure with respect to low level parameter functions.<T extends CalculusFieldElement<T>>
voidDSCompiler.reciprocal
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute reciprocal of derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.remainder
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform remainder of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.rootN
(T[] operand, int operandOffset, int n, T[] result, int resultOffset) Compute nth root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sin
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sinCos
(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset) Compute combined sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sinh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sinhCosh
(T[] operand, int operandOffset, T[] sinh, int sinhOffset, T[] cosh, int coshOffset) Compute combined hyperbolic sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sqrt
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute square root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.subtract
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform subtraction of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.tan
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.tanh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler.taylor
(T[] ds, int dsOffset, double... delta) Evaluate Taylor expansion of a derivative structure.final <T extends CalculusFieldElement<T>>
TDSCompiler.taylor
(T[] ds, int dsOffset, T... delta) Evaluate Taylor expansion of a derivative structure.static <T extends CalculusFieldElement<T>>
FieldGradient<T>FieldGradient.variable
(int freeParameters, int index, T value) Build aGradient
representing a variable.Modifier and TypeMethodDescriptionT[]
FieldDerivativeStructure.getAllDerivatives()
Get all partial derivatives.T[]
FieldGradient.getGradient()
Get the gradient part of the function.T[]
FieldTaylorMap.getPoint()
Get the point at which map is evaluated.T[]
FieldTaylorMap.value
(double... deltaP) Evaluate Taylor expansion of the map at some offset.T[]
Evaluate Taylor expansion of the map at some offset.Modifier and TypeMethodDescription<T extends CalculusFieldElement<T>>
voidDSCompiler.acos
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute arc cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.acosh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute inverse hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.add
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform addition of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.asin
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute arc sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.asinh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute inverse hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.atan
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.atan2
(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset) Compute two arguments arc tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.atanh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute inverse hyperbolic tangent of a derivative structure.final FieldDerivativeStructure<T>
Build aFieldDerivativeStructure
from all its derivatives.<T extends CalculusFieldElement<T>>
voidDSCompiler.compose
(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset) Compute composition of a derivative structure by a function.<T extends CalculusFieldElement<T>>
voidDSCompiler.compose
(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset) Compute composition of a derivative structure by a function.final FieldDerivativeStructure<T>
Compute composition of the instance by a univariate function.<T extends CalculusFieldElement<T>>
voidDSCompiler.cos
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.cosh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute hyperbolic cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.divide
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform division of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.exp
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute exponential of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.expm1
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute exp(x) - 1 of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset) Compute linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.linearCombination
(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset) Compute linear combination.FieldDerivativeStructure.linearCombination
(T[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldGradient.linearCombination
(T[] a, FieldGradient<T>[] b) Compute a linear combination.FieldUnivariateDerivative1.linearCombination
(T[] a, FieldUnivariateDerivative1<T>[] b) Compute a linear combination.FieldUnivariateDerivative2.linearCombination
(T[] a, FieldUnivariateDerivative2<T>[] b) Compute a linear combination.<T extends CalculusFieldElement<T>>
voidDSCompiler.log
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute natural logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.log10
(T[] operand, int operandOffset, T[] result, int resultOffset) Computes base 10 logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.log1p
(T[] operand, int operandOffset, T[] result, int resultOffset) Computes shifted logarithm of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.multiply
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform multiplication of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(double a, T[] operand, int operandOffset, T[] result, int resultOffset) Compute power of a double to a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(T[] operand, int operandOffset, double p, T[] result, int resultOffset) Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(T[] operand, int operandOffset, int n, T[] result, int resultOffset) Compute integer power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.pow
(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset) Compute power of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.rebase
(T[] ds, int dsOffset, DSCompiler baseCompiler, T[] p, T[] result, int resultOffset) Rebase derivative structure with respect to low level parameter functions.<T extends CalculusFieldElement<T>>
voidDSCompiler.reciprocal
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute reciprocal of derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.remainder
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform remainder of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.rootN
(T[] operand, int operandOffset, int n, T[] result, int resultOffset) Compute nth root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sin
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sinCos
(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset) Compute combined sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sinh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute hyperbolic sine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sinhCosh
(T[] operand, int operandOffset, T[] sinh, int sinhOffset, T[] cosh, int coshOffset) Compute combined hyperbolic sine and cosine of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.sqrt
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute square root of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.subtract
(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset) Perform subtraction of two derivative structures.<T extends CalculusFieldElement<T>>
voidDSCompiler.tan
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute tangent of a derivative structure.<T extends CalculusFieldElement<T>>
voidDSCompiler.tanh
(T[] operand, int operandOffset, T[] result, int resultOffset) Compute hyperbolic tangent of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler.taylor
(T[] ds, int dsOffset, double... delta) Evaluate Taylor expansion of a derivative structure.final <T extends CalculusFieldElement<T>>
TDSCompiler.taylor
(T[] ds, int dsOffset, T... delta) Evaluate Taylor expansion of a derivative structure.final T
Evaluate Taylor expansion of a derivative structure.Evaluate Taylor expansion of a gradient.T[]
Evaluate Taylor expansion of the map at some offset.ModifierConstructorDescriptionFieldGradient
(T value, T... gradient) Build an instance with values and derivative.FieldTaylorMap
(T[] point, FieldDerivativeStructure<T>[] functions) Simple constructor. -
Uses of CalculusFieldElement in org.hipparchus.analysis.integration
Modifier and TypeClassDescriptionclass
BaseAbstractFieldUnivariateIntegrator<T extends CalculusFieldElement<T>>
Provide a default implementation for several generic functions.class
FieldMidPointIntegrator<T extends CalculusFieldElement<T>>
Implements the Midpoint Rule for integration of real univariate functions.class
FieldRombergIntegrator<T extends CalculusFieldElement<T>>
Implements the Romberg Algorithm for integration of real univariate functions.class
FieldSimpsonIntegrator<T extends CalculusFieldElement<T>>
Implements Simpson's Rule for integration of real univariate functions.class
FieldTrapezoidIntegrator<T extends CalculusFieldElement<T>>
Implements the Trapezoid Rule for integration of real univariate functions.interface
FieldUnivariateIntegrator<T extends CalculusFieldElement<T>>
Interface for univariate real integration algorithms.class
IterativeLegendreFieldGaussIntegrator<T extends CalculusFieldElement<T>>
This algorithm divides the integration interval into equally-sized sub-interval and on each of them performs a Legendre-Gauss quadrature. -
Uses of CalculusFieldElement in org.hipparchus.analysis.integration.gauss
Modifier and TypeClassDescriptionclass
FieldAbstractRuleFactory<T extends CalculusFieldElement<T>>
Base class for rules that determines the integration nodes and their weights.class
FieldGaussIntegrator<T extends CalculusFieldElement<T>>
Class that implements the Gaussian rule forintegrating
a weighted function.class
FieldGaussIntegratorFactory<T extends CalculusFieldElement<T>>
Class that provides different ways to compute the nodes and weights to be used by theGaussian integration rule
.class
FieldHermiteRuleFactory<T extends CalculusFieldElement<T>>
Factory that creates a Gauss-type quadrature rule using Hermite polynomials of the first kind.class
FieldLaguerreRuleFactory<T extends CalculusFieldElement<T>>
Factory that creates Gauss-type quadrature rule using Laguerre polynomials.class
FieldLegendreRuleFactory<T extends CalculusFieldElement<T>>
Factory that creates Gauss-type quadrature rule using Legendre polynomials.class
SymmetricFieldGaussIntegrator<T extends CalculusFieldElement<T>>
This class's implementsintegrate
method assuming that the integral is symmetric about 0.Modifier and TypeMethodDescriptionprotected T[]
FieldAbstractRuleFactory.findRoots
(int n, CalculusFieldUnivariateFunction<T> ratioEvaluator) Computes roots of the associated orthogonal polynomials.Modifier and TypeMethodDescriptionprotected void
FieldAbstractRuleFactory.enforceSymmetry
(T[] roots) Enforce symmetry of roots.ModifierConstructorDescriptionFieldGaussIntegrator
(T[] points, T[] weights) Creates an integrator from the givenpoints
andweights
.SymmetricFieldGaussIntegrator
(T[] points, T[] weights) Creates an integrator from the givenpoints
andweights
. -
Uses of CalculusFieldElement in org.hipparchus.analysis.interpolation
Modifier and TypeMethodDescription<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>AkimaSplineInterpolator.interpolate
(T[] xvals, T[] yvals) Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateInterpolator.interpolate
(T[] xval, T[] yval) Compute an interpolating function for the dataset.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>LinearInterpolator.interpolate
(T[] x, T[] y) Computes a linear interpolating function for the data set.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>SplineInterpolator.interpolate
(T[] x, T[] y) Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
TBilinearInterpolatingFunction.value
(T x, T y) Compute the value for the function.<T extends CalculusFieldElement<T>>
TPiecewiseBicubicSplineInterpolatingFunction.value
(T x, T y) Compute the value for the function.Modifier and TypeMethodDescription<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>AkimaSplineInterpolator.interpolate
(T[] xvals, T[] yvals) Computes an interpolating function for the data set.<T extends CalculusFieldElement<T>>
CalculusFieldUnivariateFunction<T>FieldUnivariateInterpolator.interpolate
(T[] xval, T[] yval) Compute an interpolating function for the dataset.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>LinearInterpolator.interpolate
(T[] x, T[] y) Computes a linear interpolating function for the data set.<T extends CalculusFieldElement<T>>
FieldPolynomialSplineFunction<T>SplineInterpolator.interpolate
(T[] x, T[] y) Computes an interpolating function for the data set. -
Uses of CalculusFieldElement in org.hipparchus.analysis.polynomials
Modifier and TypeClassDescriptionclass
FieldPolynomialFunction<T extends CalculusFieldElement<T>>
Immutable representation of a real polynomial function with real coefficients.class
FieldPolynomialSplineFunction<T extends CalculusFieldElement<T>>
Represents a polynomial spline function.static class
Smoothstep function as defined here.Modifier and TypeMethodDescriptionprotected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction.differentiate
(T[] coefficients) Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
TFieldPolynomialFunction.evaluate
(T[] coefficients, T argument) Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>Get theclamping smoothstep function
.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>Get thecubic smoothstep function
.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory.getFieldGeneralOrder
(Field<T> field, int N) Create asmoothstep function
of order 2N + 1.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory.getQuadratic
(Field<T> field) Get thequadratic smoothstep function
.static <T extends CalculusFieldElement<T>>
SmoothStepFactory.FieldSmoothStepFunction<T>SmoothStepFactory.getQuintic
(Field<T> field) Get thequintic smoothstep function
.<T extends CalculusFieldElement<T>>
TPolynomialFunction.value
(T t) Compute the value of the function.<T extends CalculusFieldElement<T>>
TPolynomialFunctionNewtonForm.value
(T t) Compute the value of the function.<T extends CalculusFieldElement<T>>
TPolynomialSplineFunction.value
(T t) Compute the value of the function.Modifier and TypeMethodDescriptionprotected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction.differentiate
(T[] coefficients) Returns the coefficients of the derivative of the polynomial with the given coefficients.T[]
FieldPolynomialFunction.getCoefficients()
Returns a copy of the coefficients array.T[]
FieldPolynomialSplineFunction.getKnots()
Get an array copy of the knot points.Modifier and TypeMethodDescriptionprotected static <T extends CalculusFieldElement<T>>
T[]FieldPolynomialFunction.differentiate
(T[] coefficients) Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static <T extends CalculusFieldElement<T>>
TFieldPolynomialFunction.evaluate
(T[] coefficients, T argument) Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.ModifierConstructorDescriptionFieldPolynomialFunction
(T[] c) Construct a polynomial with the given coefficients.FieldPolynomialSplineFunction
(T[] knots, FieldPolynomialFunction<T>[] polynomials) Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of CalculusFieldElement in org.hipparchus.analysis.solvers
Modifier and TypeInterfaceDescriptioninterface
BracketedRealFieldUnivariateSolver<T extends CalculusFieldElement<T>>
Interface for(univariate real) root-finding algorithms
that maintain a bracketed solution.static class
An interval of a function that brackets a root.class
FieldBracketingNthOrderBrentSolver<T extends CalculusFieldElement<T>>
This class implements a modification of the Brent algorithm.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils.bracket
(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils.bracket
(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils.bracket
(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations) This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBound
f(a) * f(b) <= 0
Iff
is continuous on[a,b]
, this means thata
andb
bracket a root off
.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils.bracket
(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils.bracket
(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0.static <T extends CalculusFieldElement<T>>
T[]UnivariateSolverUtils.bracket
(CalculusFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations) This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBound
f(a) * f(b) <= 0
Iff
is continuous on[a,b]
, this means thata
andb
bracket a root off
. -
Uses of CalculusFieldElement in org.hipparchus.complex
Modifier and TypeClassDescriptionclass
FieldComplex<T extends CalculusFieldElement<T>>
Representation of a Complex number, i.e.class
FieldComplexField<T extends CalculusFieldElement<T>>
Representation of the complex numbers field.class
FieldComplexUnivariateIntegrator<T extends CalculusFieldElement<T>>
Wrapper to perform univariate complex integration using an underlying real integration algorithms.Modifier and TypeClassDescriptionclass
Representation of a Complex number, i.e.class
FieldComplex<T extends CalculusFieldElement<T>>
Representation of a Complex number, i.e.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
booleanFieldComplex.equals
(FieldComplex<T> x, FieldComplex<T> y) Returnstrue
iff the values are equal as defined byequals(x, y, 1)
.static <T extends CalculusFieldElement<T>>
booleanFieldComplex.equals
(FieldComplex<T> x, FieldComplex<T> y, double eps) Returnstrue
if, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static <T extends CalculusFieldElement<T>>
booleanFieldComplex.equals
(FieldComplex<T> x, FieldComplex<T> y, int maxUlps) Test for the floating-point equality between Complex objects.static <T extends CalculusFieldElement<T>>
booleanFieldComplex.equalsWithRelativeTolerance
(FieldComplex<T> x, FieldComplex<T> y, double eps) Returnstrue
if, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.static <T extends CalculusFieldElement<T>>
FieldComplexField<T>Get the field for complex numbers.static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "+INF + INFi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex.getMinusOne
(Field<T> field) Get a complex number representing "-1.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "NaN + NaNi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "1.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "π + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "0.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>ComplexUtils.polar2Complex
(T r, T theta) Creates a complex number from the given polar representation.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex.valueOf
(T realPart) Create a complex number given only the real part.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex.valueOf
(T realPart, T imaginaryPart) Create a complex number given the real and imaginary parts. -
Uses of CalculusFieldElement in org.hipparchus.dfp
-
Uses of CalculusFieldElement in org.hipparchus.linear
Modifier and TypeClassDescriptionclass
FieldQRDecomposer<T extends CalculusFieldElement<T>>
Matrix decomposer using QR-decomposition.class
FieldQRDecomposition<T extends CalculusFieldElement<T>>
Calculates the QR-decomposition of a field matrix.Modifier and TypeMethodDescriptionabstract <T extends CalculusFieldElement<T>>
intDependentVectorsHandler.manageDependent
(Field<T> field, int index, List<FieldVector<T>> basis) Manage a dependent vector.static <T extends CalculusFieldElement<T>>
List<FieldVector<T>>MatrixUtils.orthonormalize
(Field<T> field, List<FieldVector<T>> independent, T threshold, DependentVectorsHandler handler) Orthonormalize a list of vectors.Modifier and TypeMethodDescriptionprotected void
Decompose matrix.protected void
FieldQRDecomposition.performHouseholderReflection
(int minor, T[][] matrix) Perform Householder reflection for a minor A(minor, minor) of A. -
Uses of CalculusFieldElement in org.hipparchus.special
Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
TGamma.digamma
(T x) Computes the digamma function of x.static <T extends CalculusFieldElement<T>>
TErf.erf
(T x) Returns the error function.static <T extends CalculusFieldElement<T>>
TErf.erf
(T x1, T x2) Returns the difference between erf(x1) and erf(x2).static <T extends CalculusFieldElement<T>>
TErf.erfc
(T x) Returns the complementary error function.static <T extends CalculusFieldElement<T>>
TErf.erfcInv
(T x) Returns the inverse erfc.static <T extends CalculusFieldElement<T>>
TErf.erfInv
(T x) Returns the inverse erf.static <T extends CalculusFieldElement<T>>
TGamma.gamma
(T x) Returns the value of Γ(x).static <T extends CalculusFieldElement<T>>
TGamma.invGamma1pm1
(T x) Returns the value of 1 / Γ(1 + x) - 1 for -0.5 ≤ x ≤ 1.5.static <T extends CalculusFieldElement<T>>
TGamma.lanczos
(T x) Returns the Lanczos approximation used to compute the gamma function.static <T extends CalculusFieldElement<T>>
TGamma.logGamma
(T x) Returns the value of log Γ(x) for x > 0.static <T extends CalculusFieldElement<T>>
TGamma.logGamma1p
(T x) Returns the value of log Γ(1 + x) for -0.5 ≤ x ≤ 1.5.static <T extends CalculusFieldElement<T>>
TGamma.regularizedGammaP
(T a, T x) Returns the regularized gamma function P(a, x).static <T extends CalculusFieldElement<T>>
TGamma.regularizedGammaP
(T a, T x, double epsilon, int maxIterations) Returns the regularized gamma function P(a, x).static <T extends CalculusFieldElement<T>>
TGamma.regularizedGammaQ
(T a, T x) Returns the regularized gamma function Q(a, x) = 1 - P(a, x).static <T extends CalculusFieldElement<T>>
TGamma.regularizedGammaQ
(T a, T x, double epsilon, int maxIterations) Returns the regularized gamma function Q(a, x) = 1 - P(a, x).static <T extends CalculusFieldElement<T>>
TGamma.trigamma
(T x) Computes the trigamma function of x. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.carlson
Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rC
(FieldComplex<T> x, FieldComplex<T> y) Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral.rC
(T x, T y) Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rD
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral.rD
(T x, T y, T z) Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rF
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral.rF
(T x, T y, T z) Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rG
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral.rG
(T x, T y, T z) Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rJ
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p) Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rJ
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p, FieldComplex<T> delta) Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral.rJ
(T x, T y, T z, T p) Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
TCarlsonEllipticIntegral.rJ
(T x, T y, T z, T p, T delta) Compute Carlson elliptic integral RJ. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.jacobi
Modifier and TypeClassDescriptionclass
FieldCopolarC<T extends CalculusFieldElement<T>>
Copolar trio with pole at point c in Glaisher’s Notation.class
FieldCopolarD<T extends CalculusFieldElement<T>>
Copolar trio with pole at point d in Glaisher’s Notation.class
FieldCopolarN<T extends CalculusFieldElement<T>>
Copolar trio with pole at point n in Glaisher’s Notation.class
FieldCopolarS<T extends CalculusFieldElement<T>>
Copolar trio with pole at point s in Glaisher’s Notation.class
FieldJacobiElliptic<T extends CalculusFieldElement<T>>
Computation of Jacobi elliptic functions.class
FieldJacobiTheta<T extends CalculusFieldElement<T>>
Algorithm computing Jacobi theta functions.class
FieldTheta<T extends CalculusFieldElement<T>>
Values ofJacobi theta
functions.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<FieldComplex<T>>JacobiEllipticBuilder.build
(FieldComplex<T> m) Build an algorithm for computing Jacobi elliptic functions.static <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<T>JacobiEllipticBuilder.build
(T m) Build an algorithm for computing Jacobi elliptic functions. -
Uses of CalculusFieldElement in org.hipparchus.special.elliptic.legendre
Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigD
(FieldComplex<T> m) Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigD
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigD
(T m) Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigD
(T phi, T m) Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> m) Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigE
(T m) Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigE
(T phi, T m) Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigF
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigF
(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigF
(T phi, T m) Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigK
(FieldComplex<T> m) Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigK
(T m) Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigKPrime
(FieldComplex<T> m) Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigKPrime
(T m) Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> m) Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigPi
(T n, T m) Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.bigPi
(T n, T phi, T m) Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
TLegendreEllipticIntegral.nome
(T m) Get the nome q. -
Uses of CalculusFieldElement in org.hipparchus.util
Modifier and TypeClassDescriptionclass
FieldTuple<T extends CalculusFieldElement<T>>
This class allows to perform the same computation of all components of a Tuple at once.Modifier and TypeClassDescriptionclass
This class wraps adouble
value in an object.class
FieldTuple<T extends CalculusFieldElement<T>>
This class allows to perform the same computation of all components of a Tuple at once.class
This class allows to perform the same computation of all components of a Tuple at once.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
TFastMath.abs
(T x) Absolute value.static <T extends CalculusFieldElement<T>>
TFastMath.acos
(T x) Compute the arc cosine of a number.static <T extends CalculusFieldElement<T>>
TFastMath.acosh
(T a) Compute the inverse hyperbolic cosine of a number.static <T extends CalculusFieldElement<T>>
TFastMath.asin
(T x) Compute the arc sine of a number.static <T extends CalculusFieldElement<T>>
TFastMath.asinh
(T a) Compute the inverse hyperbolic sine of a number.static <T extends CalculusFieldElement<T>>
TFastMath.atan
(T x) Arctangent functionstatic <T extends CalculusFieldElement<T>>
TFastMath.atan2
(T y, T x) Two arguments arctangent functionstatic <T extends CalculusFieldElement<T>>
TFastMath.atanh
(T a) Compute the inverse hyperbolic tangent of a number.static <T extends CalculusFieldElement<T>>
TFastMath.cbrt
(T x) Compute the cubic root of a number.static <T extends CalculusFieldElement<T>>
TFastMath.ceil
(T x) Get the smallest whole number larger than x.static <T extends CalculusFieldElement<T>>
voidMathArrays.checkEqualLength
(T[] a, T[] b) Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
booleanMathArrays.checkEqualLength
(T[] a, T[] b, boolean abort) Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
voidMathArrays.checkOrder
(T[] val) Check that the given array is sorted in strictly increasing order.static <T extends CalculusFieldElement<T>>
voidMathArrays.checkOrder
(T[] val, MathArrays.OrderDirection dir, boolean strict) Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
booleanMathArrays.checkOrder
(T[] val, MathArrays.OrderDirection dir, boolean strict, boolean abort) Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
TFastMath.copySign
(T magnitude, double sign) Returns the first argument with the sign of the second argument.static <T extends CalculusFieldElement<T>>
TFastMath.copySign
(T magnitude, T sign) Returns the first argument with the sign of the second argument.static <T extends CalculusFieldElement<T>>
TFastMath.cos
(T x) Cosine function.static <T extends CalculusFieldElement<T>>
TFastMath.cosh
(T x) Compute the hyperbolic cosine of a number.static <S extends CalculusFieldElement<S>>
FieldSinCos<S>FieldSinCos.difference
(FieldSinCos<S> scAlpha, FieldSinCos<S> scBeta) Compute sine and cosine of angles difference.static <S extends CalculusFieldElement<S>>
FieldSinhCosh<S>FieldSinhCosh.difference
(FieldSinhCosh<S> schAlpha, FieldSinhCosh<S> schBeta) Compute hyperbolic sine and hyperbolic cosine of angles difference.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate
(T x) Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate
(T x, double epsilon) Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate
(T x, double epsilon, int maxIterations) Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate
(T x, int maxIterations) Evaluates the continued fraction at the value x.static <T extends CalculusFieldElement<T>>
TFastMath.exp
(T x) Exponential function.static <T extends CalculusFieldElement<T>>
TFastMath.expm1
(T x) Compute exp(x) - 1static <T extends CalculusFieldElement<T>>
TFastMath.floor
(T x) Get the largest whole number smaller than x.abstract <T extends CalculusFieldElement<T>>
TFieldContinuedFraction.getA
(int n, T x) Access the n-th a coefficient of the continued fraction.abstract <T extends CalculusFieldElement<T>>
TFieldContinuedFraction.getB
(int n, T x) Access the n-th b coefficient of the continued fraction.static <T extends CalculusFieldElement<T>>
TFastMath.hypot
(T x, T y) Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
TFastMath.IEEEremainder
(T dividend, double divisor) Computes the remainder as prescribed by the IEEE 754 standard.static <T extends CalculusFieldElement<T>>
TFastMath.IEEEremainder
(T dividend, T divisor) Computes the remainder as prescribed by the IEEE 754 standard.static <T extends CalculusFieldElement<T>>
TFastMath.log
(T x) Natural logarithm.static <T extends CalculusFieldElement<T>>
TFastMath.log10
(T x) Compute the base 10 logarithm.static <T extends CalculusFieldElement<T>>
TFastMath.log1p
(T x) Computes log(1 + x).static <T extends CalculusFieldElement<T>>
TFastMath.max
(T a, double b) Compute the maximum of two valuesstatic <T extends CalculusFieldElement<T>>
TFastMath.max
(T a, T b) Compute the maximum of two valuesstatic <T extends CalculusFieldElement<T>>
TMathUtils.max
(T e1, T e2) Find the maximum of two field elements.static <T extends CalculusFieldElement<T>>
TFastMath.min
(T a, double b) Compute the minimum of two valuesstatic <T extends CalculusFieldElement<T>>
TFastMath.min
(T a, T b) Compute the minimum of two valuesstatic <T extends CalculusFieldElement<T>>
TMathUtils.min
(T e1, T e2) Find the minimum of two field elements.static <T extends CalculusFieldElement<T>>
doubleFastMath.norm
(T x) Norm.static <T extends CalculusFieldElement<T>>
TMathUtils.normalizeAngle
(T a, T center) Normalize an angle in a 2π wide interval around a center value.static <T extends CalculusFieldElement<T>>
TFastMath.pow
(T x, double y) Power function.static <T extends CalculusFieldElement<T>>
TFastMath.pow
(T d, int e) Raise a double to an int power.static <T extends CalculusFieldElement<T>>
TFastMath.pow
(T x, T y) Power function.static <T extends CalculusFieldElement<T>>
TFastMath.rint
(T x) Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.static <T extends CalculusFieldElement<T>>
longFastMath.round
(T x) Get the closest long to x.static <T extends CalculusFieldElement<T>>
TFastMath.scalb
(T d, int n) Multiply a double number by a power of 2.static <T extends CalculusFieldElement<T>>
TFastMath.sign
(T a) Compute the sign of a number.static <T extends CalculusFieldElement<T>>
TFastMath.sin
(T x) Sine function.static <T extends CalculusFieldElement<T>>
FieldSinCos<T>FastMath.sinCos
(T x) Combined Sine and Cosine function.static <T extends CalculusFieldElement<T>>
TFastMath.sinh
(T x) Compute the hyperbolic sine of a number.static <T extends CalculusFieldElement<T>>
FieldSinhCosh<T>FastMath.sinhCosh
(T x) Combined hyperbolic sine and hyperbolic cosine function.static <T extends CalculusFieldElement<T>>
TFastMath.sqrt
(T a) Compute the square root of a number.static <S extends CalculusFieldElement<S>>
FieldSinCos<S>FieldSinCos.sum
(FieldSinCos<S> scAlpha, FieldSinCos<S> scBeta) Compute sine and cosine of angles sum.static <S extends CalculusFieldElement<S>>
FieldSinhCosh<S>FieldSinhCosh.sum
(FieldSinhCosh<S> schAlpha, FieldSinhCosh<S> schBeta) Compute hyperbolic sine and hyperbolic cosine of angles sum.static <T extends CalculusFieldElement<T>>
TFastMath.tan
(T x) Tangent function.static <T extends CalculusFieldElement<T>>
TFastMath.tanh
(T x) Compute the hyperbolic tangent of a number.static <T extends CalculusFieldElement<T>>
TFastMath.toDegrees
(T x) Convert radians to degrees, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
TFastMath.toRadians
(T x) Convert degrees to radians, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
TFastMath.ulp
(T x) Compute least significant bit (Unit in Last Position) for a number.Modifier and TypeMethodDescriptionT[]
FieldTuple.getComponents()
Get all components of the tuple.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
voidMathArrays.checkEqualLength
(T[] a, T[] b) Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
booleanMathArrays.checkEqualLength
(T[] a, T[] b, boolean abort) Check that both arrays have the same length.static <T extends CalculusFieldElement<T>>
voidMathArrays.checkOrder
(T[] val) Check that the given array is sorted in strictly increasing order.static <T extends CalculusFieldElement<T>>
voidMathArrays.checkOrder
(T[] val, MathArrays.OrderDirection dir, boolean strict) Check that the given array is sorted.static <T extends CalculusFieldElement<T>>
booleanMathArrays.checkOrder
(T[] val, MathArrays.OrderDirection dir, boolean strict, boolean abort) Check that the given array is sorted.