Uses of Class
org.hipparchus.linear.RealVector
Packages that use RealVector
Package
Description
Kalman filter.
Kalman filter implementation for non-linear processes.
Kalman filter implementation for linear processes.
Unscented Kalman filter implementation.
Linear algebra support.
Optimization algorithms for linear constrained problems.
This package provides algorithms that minimize the residuals
between observations and model values.
This package provides algorithms that minimize the residuals
between observations and model values.
Statistical routines involving multivariate data.
Convenience routines and common data structures used throughout the Hipparchus library.
-
Uses of RealVector in org.hipparchus.filtering.kalman
Methods in org.hipparchus.filtering.kalman that return RealVectorModifier and TypeMethodDescriptionProcessEstimate.getState()Get the state vector.Measurement.getValue()Get the measurement vector.Methods in org.hipparchus.filtering.kalman with parameters of type RealVectorModifier and TypeMethodDescriptionprotected voidAbstractKalmanFilter.correct(T measurement, RealMatrix stm, RealVector innovation, RealMatrix h, RealMatrix s) Perform correction step.protected voidAbstractKalmanFilter.predict(double time, RealVector predictedState, RealMatrix stm, RealMatrix noise) Perform prediction step.Constructors in org.hipparchus.filtering.kalman with parameters of type RealVectorModifierConstructorDescriptionProcessEstimate(double time, RealVector state, RealMatrix covariance) Simple constructor.ProcessEstimate(double time, RealVector state, RealMatrix covariance, RealMatrix stateTransitionMatrix, RealMatrix measurementJacobian, RealMatrix innovationCovariance, RealMatrix kalmanGain) Simple constructor. -
Uses of RealVector in org.hipparchus.filtering.kalman.extended
Methods in org.hipparchus.filtering.kalman.extended that return RealVectorModifier and TypeMethodDescriptionNonLinearEvolution.getCurrentState()Get current state.NonLinearProcess.getInnovation(T measurement, NonLinearEvolution evolution, RealMatrix innovationCovarianceMatrix) Get the innovation brought by a measurement.Methods in org.hipparchus.filtering.kalman.extended with parameters of type RealVectorModifier and TypeMethodDescriptionNonLinearProcess.getEvolution(double previousTime, RealVector previousState, T measurement) Get the state evolution between two times.Constructors in org.hipparchus.filtering.kalman.extended with parameters of type RealVectorModifierConstructorDescriptionNonLinearEvolution(double currentTime, RealVector currentState, RealMatrix stateTransitionMatrix, RealMatrix processNoiseMatrix, RealMatrix measurementJacobian) Simple constructor. -
Uses of RealVector in org.hipparchus.filtering.kalman.linear
Methods in org.hipparchus.filtering.kalman.linear that return RealVectorConstructors in org.hipparchus.filtering.kalman.linear with parameters of type RealVectorModifierConstructorDescriptionLinearEvolution(RealMatrix stateTransitionMatrix, RealMatrix controlMatrix, RealVector command, RealMatrix processNoiseMatrix, RealMatrix measurementJacobian) Simple constructor. -
Uses of RealVector in org.hipparchus.filtering.kalman.unscented
Methods in org.hipparchus.filtering.kalman.unscented that return RealVectorModifier and TypeMethodDescriptionUnscentedEvolution.getCurrentStates()Get current states.UnscentedProcess.getInnovation(T measurement, RealVector predictedMeasurement, RealVector predictedState, RealMatrix innovationCovarianceMatrix) Get the innovation brought by a measurement.UnscentedProcess.getPredictedMeasurements(RealVector[] predictedSigmaPoints, T measurement) Get the state evolution between two times.Methods in org.hipparchus.filtering.kalman.unscented with parameters of type RealVectorModifier and TypeMethodDescriptionUnscentedProcess.getEvolution(double previousTime, RealVector[] sigmaPoints, T measurement) Get the state evolution between two times.UnscentedProcess.getInnovation(T measurement, RealVector predictedMeasurement, RealVector predictedState, RealMatrix innovationCovarianceMatrix) Get the innovation brought by a measurement.UnscentedProcess.getPredictedMeasurements(RealVector[] predictedSigmaPoints, T measurement) Get the state evolution between two times.UnscentedProcess.getProcessNoiseMatrix(double previousTime, RealVector predictedState, T measurement) Get the process noise covariance corresponding to the state evolution between two times.Constructors in org.hipparchus.filtering.kalman.unscented with parameters of type RealVectorModifierConstructorDescriptionUnscentedEvolution(double currentTime, RealVector[] currentStates) Constructor. -
Uses of RealVector in org.hipparchus.linear
Subclasses of RealVector in org.hipparchus.linearModifier and TypeClassDescriptionclassThis class implements theRealVectorinterface with a double array.classThis class implements theRealVectorinterface with aOpenIntToDoubleHashMapbacking store.classMarker class for RealVectors that require sparse backing storageMethods in org.hipparchus.linear that return RealVectorModifier and TypeMethodDescriptionOpenMapRealVector.add(RealVector v) Compute the sum of this vector andv.RealVector.add(RealVector v) Compute the sum of this vector andv.ArrayRealVector.append(double in) Construct a new vector by appending a double to this vector.ArrayRealVector.append(RealVector v) Construct a new vector by appending a vector to this vector.abstract RealVectorRealVector.append(double d) Construct a new vector by appending a double to this vector.abstract RealVectorRealVector.append(RealVector v) Construct a new vector by appending a vector to this vector.RealVector.combine(double a, double b, RealVector y) Returns a new vector representinga * this + b * y, the linear combination ofthisandy.RealVector.combineToSelf(double a, double b, RealVector y) Updatesthiswith the linear combination ofthisandy.abstract RealVectorRealVector.copy()Returns a (deep) copy of this vector.static RealVectorMatrixUtils.createRealVector(double[] data) Creates aRealVectorusing the data from the input array.static RealVectorMatrixUtils.createRealVector(int dimension) Creates aRealVectorwith specified dimensions.abstract RealVectorRealVector.ebeDivide(RealVector v) Element-by-element division.abstract RealVectorRealVector.ebeMultiply(RealVector v) Element-by-element multiplication.AbstractRealMatrix.getColumnVector(int column) Get the entries at the given column index as a vector.BlockRealMatrix.getColumnVector(int column) Get the entries at the given column index as a vector.RealMatrix.getColumnVector(int column) Get the entries at the given column index as a vector.EigenDecompositionSymmetric.getEigenvector(int i) Gets a copy of the ith eigenvector of the original matrix.DefaultIterativeLinearSolverEvent.getResidual()Returns the residual.IterativeLinearSolverEvent.getResidual()Returns the residual.DefaultIterativeLinearSolverEvent.getRightHandSideVector()Returns the current right-hand side of the linear system to be solved.abstract RealVectorIterativeLinearSolverEvent.getRightHandSideVector()Returns the current right-hand side of the linear system to be solved.AbstractRealMatrix.getRowVector(int row) Returns the entries in row numberrowas a vector.BlockRealMatrix.getRowVector(int row) Returns the entries in row numberrowas a vector.RealMatrix.getRowVector(int row) Returns the entries in row numberrowas a vector.DefaultIterativeLinearSolverEvent.getSolution()Returns the current estimate of the solution to the linear system to be solved.abstract RealVectorIterativeLinearSolverEvent.getSolution()Returns the current estimate of the solution to the linear system to be solved.ArrayRealVector.getSubVector(int index, int n) Get a subvector from consecutive elements.abstract RealVectorRealVector.getSubVector(int index, int n) Get a subvector from consecutive elements.RealVector.map(UnivariateFunction function) Acts as if implemented as:RealVector.mapAdd(double d) Add a value to each entry.ArrayRealVector.mapAddToSelf(double d) Add a value to each entry.RealVector.mapAddToSelf(double d) Add a value to each entry.RealVector.mapDivide(double d) Divide each entry by the argument.ArrayRealVector.mapDivideToSelf(double d) Divide each entry by the argument.RealVector.mapDivideToSelf(double d) Divide each entry by the argument.RealVector.mapMultiply(double d) Multiply each entry by the argument.ArrayRealVector.mapMultiplyToSelf(double d) Multiply each entry.RealVector.mapMultiplyToSelf(double d) Multiply each entry.RealVector.mapSubtract(double d) Subtract a value from each entry.ArrayRealVector.mapSubtractToSelf(double d) Subtract a value from each entry.RealVector.mapSubtractToSelf(double d) Subtract a value from each entry.RealVector.mapToSelf(UnivariateFunction function) Acts as if it is implemented as:AbstractRealMatrix.operate(RealVector v) Returns the result of multiplying this by the vectorv.JacobiPreconditioner.operate(RealVector x) Returns the result of multiplyingthisby the vectorx.RealLinearOperator.operate(RealVector x) Returns the result of multiplyingthisby the vectorx.RealMatrix.operate(RealVector v) Returns the result of multiplying this by the vectorv.default RealVectorRealLinearOperator.operateTranspose(RealVector x) Returns the result of multiplying the transpose ofthisoperator by the vectorx(optional operation).AbstractRealMatrix.preMultiply(RealVector v) Returns the (row) vector result of premultiplying this by the vectorv.DiagonalMatrix.preMultiply(RealVector v) Returns the (row) vector result of premultiplying this by the vectorv.RealMatrix.preMultiply(RealVector v) Returns the (row) vector result of premultiplying this by the vectorv.RealVector.projection(RealVector v) Find the orthogonal projection of this vector onto another vector.DecompositionSolver.solve(RealVector b) Solve the linear equation A × X = B for matrices A.IterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.IterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, boolean goodb, double shift) Returns the solution to the system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.ConjugateGradient.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorPreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.OpenMapRealVector.subtract(RealVector v) Subtractvfrom this vector.RealVector.subtract(RealVector v) Subtractvfrom this vector.RealVector.unitVector()Creates a unit vector pointing in the direction of this vector.static RealVectorRealVector.unmodifiableRealVector(RealVector v) Returns an unmodifiable view of the specified vector.Methods in org.hipparchus.linear that return types with arguments of type RealVectorModifier and TypeMethodDescriptionstatic List<RealVector> MatrixUtils.orthonormalize(List<RealVector> independent, double threshold, DependentVectorsHandler handler) Orthonormalize a list of vectors.Methods in org.hipparchus.linear with parameters of type RealVectorModifier and TypeMethodDescriptionArrayRealVector.add(RealVector v) Compute the sum of this vector andv.OpenMapRealVector.add(RealVector v) Compute the sum of this vector andv.RealVector.add(RealVector v) Compute the sum of this vector andv.ArrayRealVector.append(RealVector v) Construct a new vector by appending a vector to this vector.OpenMapRealVector.append(RealVector v) Construct a new vector by appending a vector to this vector.abstract RealVectorRealVector.append(RealVector v) Construct a new vector by appending a vector to this vector.protected static voidIterativeLinearSolver.checkParameters(RealLinearOperator a, RealVector b, RealVector x0) Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected static voidPreconditionedIterativeLinearSolver.checkParameters(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected voidArrayRealVector.checkVectorDimensions(RealVector v) Check if instance and specified vectors have the same dimension.protected voidRealVector.checkVectorDimensions(RealVector v) Check if instance and specified vectors have the same dimension.ArrayRealVector.combine(double a, double b, RealVector y) Returns a new vector representinga * this + b * y, the linear combination ofthisandy.RealVector.combine(double a, double b, RealVector y) Returns a new vector representinga * this + b * y, the linear combination ofthisandy.ArrayRealVector.combineToSelf(double a, double b, RealVector y) Updatesthiswith the linear combination ofthisandy.RealVector.combineToSelf(double a, double b, RealVector y) Updatesthiswith the linear combination ofthisandy.doubleRealVector.cosine(RealVector v) Computes the cosine of the angle between this vector and the argument.doubleArrayRealVector.dotProduct(RealVector v) Compute the dot product of this vector withv.doubleRealVector.dotProduct(RealVector v) Compute the dot product of this vector withv.ArrayRealVector.ebeDivide(RealVector v) Element-by-element division.OpenMapRealVector.ebeDivide(RealVector v) Element-by-element division.abstract RealVectorRealVector.ebeDivide(RealVector v) Element-by-element division.ArrayRealVector.ebeMultiply(RealVector v) Element-by-element multiplication.OpenMapRealVector.ebeMultiply(RealVector v) Element-by-element multiplication.abstract RealVectorRealVector.ebeMultiply(RealVector v) Element-by-element multiplication.RealVectorFormat.format(RealVector v) This method callsRealVectorFormat.format(RealVector,StringBuffer,FieldPosition).RealVectorFormat.format(RealVector vector, StringBuffer toAppendTo, FieldPosition pos) Formats aRealVectorobject to produce a string.doubleArrayRealVector.getDistance(RealVector v) Distance between two vectors.doubleOpenMapRealVector.getDistance(RealVector v) Distance between two vectors.doubleRealVector.getDistance(RealVector v) Distance between two vectors.doubleArrayRealVector.getL1Distance(RealVector v) Distance between two vectors.doubleOpenMapRealVector.getL1Distance(RealVector v) Distance between two vectors.doubleRealVector.getL1Distance(RealVector v) Distance between two vectors.doubleArrayRealVector.getLInfDistance(RealVector v) Distance between two vectors.doubleOpenMapRealVector.getLInfDistance(RealVector v) Distance between two vectors.doubleRealVector.getLInfDistance(RealVector v) Distance between two vectors.AbstractRealMatrix.operate(RealVector v) Returns the result of multiplying this by the vectorv.JacobiPreconditioner.operate(RealVector x) Returns the result of multiplyingthisby the vectorx.RealLinearOperator.operate(RealVector x) Returns the result of multiplyingthisby the vectorx.RealMatrix.operate(RealVector v) Returns the result of multiplying this by the vectorv.default RealVectorRealLinearOperator.operateTranspose(RealVector x) Returns the result of multiplying the transpose ofthisoperator by the vectorx(optional operation).ArrayRealVector.outerProduct(RealVector v) Compute the outer product.RealVector.outerProduct(RealVector v) Compute the outer product.AbstractRealMatrix.preMultiply(RealVector v) Returns the (row) vector result of premultiplying this by the vectorv.DiagonalMatrix.preMultiply(RealVector v) Returns the (row) vector result of premultiplying this by the vectorv.RealMatrix.preMultiply(RealVector v) Returns the (row) vector result of premultiplying this by the vectorv.RealVector.projection(RealVector v) Find the orthogonal projection of this vector onto another vector.voidAbstractRealMatrix.setColumnVector(int column, RealVector vector) Sets the specifiedcolumnofthismatrix to the entries of the specifiedvector.voidBlockRealMatrix.setColumnVector(int column, RealVector vector) Sets the specifiedcolumnofthismatrix to the entries of the specifiedvector.voidRealMatrix.setColumnVector(int column, RealVector vector) Sets the specifiedcolumnofthismatrix to the entries of the specifiedvector.voidAbstractRealMatrix.setRowVector(int row, RealVector vector) Sets the specifiedrowofthismatrix to the entries of the specifiedvector.voidBlockRealMatrix.setRowVector(int row, RealVector vector) Sets the specifiedrowofthismatrix to the entries of the specifiedvector.voidRealMatrix.setRowVector(int row, RealVector vector) Sets the specifiedrowofthismatrix to the entries of the specifiedvector.voidArrayRealVector.setSubVector(int index, RealVector v) Set a sequence of consecutive elements.voidOpenMapRealVector.setSubVector(int index, RealVector v) Set a sequence of consecutive elements.abstract voidRealVector.setSubVector(int index, RealVector v) Set a sequence of consecutive elements.DecompositionSolver.solve(RealVector b) Solve the linear equation A × X = B for matrices A.IterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.IterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, boolean goodb, double shift) Returns the solution to the system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.ConjugateGradient.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorPreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.static voidMatrixUtils.solveLowerTriangularSystem(RealMatrix rm, RealVector b) Solve a system of composed of a Lower Triangular MatrixRealMatrix.static voidMatrixUtils.solveUpperTriangularSystem(RealMatrix rm, RealVector b) Solver a system composed of an Upper Triangular MatrixRealMatrix.ArrayRealVector.subtract(RealVector v) Subtractvfrom this vector.OpenMapRealVector.subtract(RealVector v) Subtractvfrom this vector.RealVector.subtract(RealVector v) Subtractvfrom this vector.static RealVectorRealVector.unmodifiableRealVector(RealVector v) Returns an unmodifiable view of the specified vector.Method parameters in org.hipparchus.linear with type arguments of type RealVectorModifier and TypeMethodDescriptionabstract intDependentVectorsHandler.manageDependent(int index, List<RealVector> basis) Manage a dependent vector.static List<RealVector> MatrixUtils.orthonormalize(List<RealVector> independent, double threshold, DependentVectorsHandler handler) Orthonormalize a list of vectors.Constructors in org.hipparchus.linear with parameters of type RealVectorModifierConstructorDescriptionArrayRealVector(ArrayRealVector v1, RealVector v2) Construct a vector by appending one vector to another vector.Construct a vector from another vector, using a deep copy.ArrayRealVector(RealVector v1, ArrayRealVector v2) Construct a vector by appending one vector to another vector.DefaultIterativeLinearSolverEvent(Object source, int iterations, RealVector x, RealVector b, double rnorm) Creates a new instance of this class.DefaultIterativeLinearSolverEvent(Object source, int iterations, RealVector x, RealVector b, RealVector r, double rnorm) Creates a new instance of this class.Generic copy constructor. -
Uses of RealVector in org.hipparchus.optim.linear
Methods in org.hipparchus.optim.linear that return RealVectorModifier and TypeMethodDescriptionLinearConstraint.getCoefficients()Gets the coefficients of the constraint (left hand side).LinearObjectiveFunction.getCoefficients()Gets the coefficients of the linear equation being optimized.Methods in org.hipparchus.optim.linear with parameters of type RealVectorModifier and TypeMethodDescriptiondoubleLinearObjectiveFunction.value(RealVector point) Computes the value of the linear equation at the current point.Constructors in org.hipparchus.optim.linear with parameters of type RealVectorModifierConstructorDescriptionLinearConstraint(RealVector lhsCoefficients, double lhsConstant, Relationship relationship, RealVector rhsCoefficients, double rhsConstant) Build a constraint involving two linear equations.LinearConstraint(RealVector coefficients, Relationship relationship, double value) Build a constraint involving a single linear equation.LinearObjectiveFunction(RealVector coefficients, double constantTerm) Simple constructor. -
Uses of RealVector in org.hipparchus.optim.nonlinear.vector.constrained
Methods in org.hipparchus.optim.nonlinear.vector.constrained that return RealVectorModifier and TypeMethodDescriptionLagrangeSolution.getLambda()Returns Lambda MultiplierBoundedConstraint.getLowerBound()Get Lower Bound forvalue(x).Constraint.getLowerBound()Get Lower Bound forvalue(x).QuadraticFunction.getQ()Get vector of weights for linear terms.ADMMQPModifiedRuizEquilibrium.getScaledLUb(RealVector lb1) Get scaled upper boundADMMQPModifiedRuizEquilibrium.getScaledQ()Get scaled vector of weights for linear terms.BoundedConstraint.getUpperBound()Get Upper Bound forvalue(x).Constraint.getUpperBound()Get Upper Bound forvalue(x).ADMMQPSolution.getV()Returns V tilde auxiliary VariableLagrangeSolution.getX()Returns X solutionADMMQPSolution.getZ()Returns Z auxiliary VariableQuadraticFunction.gradient(RealVector x) Returns the gradient of this function at (x)TwiceDifferentiableFunction.gradient(double[] x) Returns the gradient of this function at (x)abstract RealVectorTwiceDifferentiableFunction.gradient(RealVector x) Returns the gradient of this function at (x)protected RealVectorAbstractSQPOptimizer.lagrangianGradX(RealVector currentGrad, RealMatrix jacobConstraint, RealVector x, RealVector y) Compute Lagrangian gradient for variable XADMMQPModifiedRuizEquilibrium.unscaleX(RealVector x) Unscale solution vector.ADMMQPModifiedRuizEquilibrium.unscaleY(RealVector y) Unscale Y vector.ADMMQPModifiedRuizEquilibrium.unscaleZ(RealVector z) Unscale Z vector.LinearBoundedConstraint.value(RealVector x) Returns the value of this function at (x)LinearEqualityConstraint.value(RealVector x) LinearInequalityConstraint.value(RealVector x) VectorDifferentiableFunction.value(RealVector x) Returns the value of this function at (x)Methods in org.hipparchus.optim.nonlinear.vector.constrained with parameters of type RealVectorModifier and TypeMethodDescriptionADMMQPModifiedRuizEquilibrium.getScaledLUb(RealVector lb1) Get scaled upper boundQuadraticFunction.gradient(RealVector x) Returns the gradient of this function at (x)abstract RealVectorTwiceDifferentiableFunction.gradient(RealVector x) Returns the gradient of this function at (x)QuadraticFunction.hessian(RealVector x) The Hessian of this function at (x)abstract RealMatrixTwiceDifferentiableFunction.hessian(RealVector x) The Hessian of this function at (x)voidADMMQPKKT.initialize(RealMatrix newH, RealMatrix newA, RealVector newQ, int me, RealVector newLb, RealVector newUb, double rho, double newSigma, double newAlpha) Initialize problemADMMQPKKT.iterate(RealVector... previousSol) Iterate Karush–Kuhn–Tucker equation from given list of VectorKarushKuhnTuckerSolver.iterate(RealVector... b) Iterate Karush–Kuhn–Tucker equation from given list of VectorLinearBoundedConstraint.jacobian(RealVector x) Returns the gradient of this function at (x)LinearEqualityConstraint.jacobian(RealVector x) LinearInequalityConstraint.jacobian(RealVector x) VectorDifferentiableFunction.jacobian(RealVector x) Returns the gradient of this function at (x)protected RealVectorAbstractSQPOptimizer.lagrangianGradX(RealVector currentGrad, RealMatrix jacobConstraint, RealVector x, RealVector y) Compute Lagrangian gradient for variable XdoubleADMMQPConvergenceChecker.maxDual(RealVector x, RealVector y) Compute dual vectors max.doubleADMMQPConvergenceChecker.maxPrimal(RealVector x, RealVector z) Compute primal vectors max.doubleBoundedConstraint.overshoot(RealVector y) Check how much a point overshoots the constraint.doubleConstraint.overshoot(RealVector y) Check how much a point overshoots the constraint.doubleADMMQPConvergenceChecker.residualDual(RealVector x, RealVector y) Compute dual residual.doubleADMMQPConvergenceChecker.residualPrime(RealVector x, RealVector z) Compute primal residual.ADMMQPKKT.solve(RealVector b1, RealVector b2) Solve Karush–Kuhn–Tucker equation from given right hand value.KarushKuhnTuckerSolver.solve(RealVector b1, RealVector b2) Solve Karush–Kuhn–Tucker equation from given right hand value.ADMMQPModifiedRuizEquilibrium.unscaleX(RealVector x) Unscale solution vector.ADMMQPModifiedRuizEquilibrium.unscaleY(RealVector y) Unscale Y vector.ADMMQPModifiedRuizEquilibrium.unscaleZ(RealVector z) Unscale Z vector.LinearBoundedConstraint.value(RealVector x) Returns the value of this function at (x)LinearEqualityConstraint.value(RealVector x) LinearInequalityConstraint.value(RealVector x) doubleQuadraticFunction.value(RealVector x) Returns the value of this function at (x)abstract doubleTwiceDifferentiableFunction.value(RealVector x) Returns the value of this function at (x)VectorDifferentiableFunction.value(RealVector x) Returns the value of this function at (x)Constructors in org.hipparchus.optim.nonlinear.vector.constrained with parameters of type RealVectorModifierConstructorDescriptionSimple constructorSimple constructor.ADMMQPSolution(RealVector x, RealVector lambda, Double value) Simple constructor.ADMMQPSolution(RealVector x, RealVector v, RealVector y, RealVector z) Simple constructor.ADMMQPSolution(RealVector x, RealVector v, RealVector y, RealVector z, double value) Simple constructor.protectedBoundedConstraint(RealVector lower, RealVector upper) Simple constructor.EqualityConstraint(RealVector value) Simple constructor.InequalityConstraint(RealVector lower) Simple constructor.LagrangeSolution(RealVector x, RealVector lambda, double value) Simple constructor.LinearBoundedConstraint(RealMatrix a, RealVector lower, RealVector upper) Construct a set of linear inequality constraints from Ax < BConstruct a set of linear equality constraints ax = b.Construct a set of linear inequality constraints from \( A x \gt B\).QuadraticFunction(RealMatrix p, RealVector q, double d) Construct quadratic function \(\frac{1}{2}x^T P X + Q^T x + d\). -
Uses of RealVector in org.hipparchus.optim.nonlinear.vector.leastsquares
Methods in org.hipparchus.optim.nonlinear.vector.leastsquares that return RealVectorModifier and TypeMethodDescriptionValueAndJacobianFunction.computeValue(double[] params) Compute the value.LeastSquaresProblem.Evaluation.getPoint()Get the abscissa (independent variables) of this evaluation.LeastSquaresProblem.Evaluation.getResiduals()Get the weighted residuals.AbstractEvaluation.getSigma(double covarianceSingularityThreshold) Get an estimate of the standard deviation of the parameters.LeastSquaresProblem.Evaluation.getSigma(double covarianceSingularityThreshold) Get an estimate of the standard deviation of the parameters.LeastSquaresAdapter.getStart()Gets the initial guess.LeastSquaresProblem.getStart()Gets the initial guess.ParameterValidator.validate(RealVector params) Validates the set of parameters.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares that return types with arguments of type RealVectorModifier and TypeMethodDescriptionMultivariateJacobianFunction.value(RealVector point) Compute the function value and its Jacobian.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares with parameters of type RealVectorModifier and TypeMethodDescriptionstatic LeastSquaresProblemLeastSquaresFactory.create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblemfrom the given elements.static LeastSquaresProblemLeastSquaresFactory.create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations, boolean lazyEvaluation, ParameterValidator paramValidator) Create aLeastSquaresProblemfrom the given elements.static LeastSquaresProblemLeastSquaresFactory.create(MultivariateJacobianFunction model, RealVector observed, RealVector start, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblemfrom the given elements.LeastSquaresAdapter.evaluate(RealVector point) Evaluate the model at the specified point.LeastSquaresProblem.evaluate(RealVector point) Evaluate the model at the specified point.LeastSquaresBuilder.start(RealVector newStart) Configure the initial guess.LeastSquaresBuilder.target(RealVector newTarget) Configure the observed data.ParameterValidator.validate(RealVector params) Validates the set of parameters.MultivariateJacobianFunction.value(RealVector point) Compute the function value and its Jacobian.static LeastSquaresProblemLeastSquaresFactory.weightDiagonal(LeastSquaresProblem problem, RealVector weights) Apply a diagonal weight matrix to theLeastSquaresProblem.SequentialGaussNewtonOptimizer.withAPrioriData(RealVector aPrioriState, RealMatrix aPrioriCovariance) Configure from a priori state and covariance.SequentialGaussNewtonOptimizer.withAPrioriData(RealVector aPrioriState, RealMatrix aPrioriCovariance, double relativeSymmetryThreshold, double absolutePositivityThreshold) Configure from a priori state and covariance. -
Uses of RealVector in org.hipparchus.stat.regression
Methods in org.hipparchus.stat.regression that return RealVectorModifier and TypeMethodDescriptionprotected abstract RealVectorAbstractMultipleLinearRegression.calculateBeta()Calculates the beta of multiple linear regression in matrix notation.protected RealVectorGLSMultipleLinearRegression.calculateBeta()Calculates beta by GLS.protected RealVectorOLSMultipleLinearRegression.calculateBeta()Calculates the regression coefficients using OLS.protected RealVectorAbstractMultipleLinearRegression.calculateResiduals()Calculates the residuals of multiple linear regression in matrix notation.protected RealVectorAbstractMultipleLinearRegression.getY()Get the Y sample data. -
Uses of RealVector in org.hipparchus.util
Methods in org.hipparchus.util that return RealVectorModifier and TypeMethodDescriptiondefault RealVectorUnscentedTransformProvider.getUnscentedMeanState(RealVector[] sigmaPoints) Computes a weighted mean state from a given set of sigma points.JulierUnscentedTransform.getWc()Get the covariance weights.MerweUnscentedTransform.getWc()Get the covariance weights.UnscentedTransformProvider.getWc()Get the covariance weights.JulierUnscentedTransform.getWm()Get the mean weights.MerweUnscentedTransform.getWm()Get the mean weights.UnscentedTransformProvider.getWm()Get the mean weights.AbstractUnscentedTransform.unscentedTransform(RealVector state, RealMatrix covariance) Perform the unscented transform from a state and its covariance.UnscentedTransformProvider.unscentedTransform(RealVector state, RealMatrix covariance) Perform the unscented transform from a state and its covariance.Methods in org.hipparchus.util that return types with arguments of type RealVectorModifier and TypeMethodDescriptiondefault Pair<RealVector, RealMatrix> UnscentedTransformProvider.inverseUnscentedTransform(RealVector[] sigmaPoints) Perform the inverse unscented transform from an array of sigma points.Methods in org.hipparchus.util with parameters of type RealVectorModifier and TypeMethodDescriptiondefault RealMatrixUnscentedTransformProvider.getUnscentedCovariance(RealVector[] sigmaPoints, RealVector meanState) Computes the unscented covariance matrix from a weighted mean state and a set of sigma points.default RealVectorUnscentedTransformProvider.getUnscentedMeanState(RealVector[] sigmaPoints) Computes a weighted mean state from a given set of sigma points.default Pair<RealVector, RealMatrix> UnscentedTransformProvider.inverseUnscentedTransform(RealVector[] sigmaPoints) Perform the inverse unscented transform from an array of sigma points.AbstractUnscentedTransform.unscentedTransform(RealVector state, RealMatrix covariance) Perform the unscented transform from a state and its covariance.UnscentedTransformProvider.unscentedTransform(RealVector state, RealMatrix covariance) Perform the unscented transform from a state and its covariance.