Uses of Class
org.hipparchus.geometry.euclidean.twod.Vector2D
Packages that use Vector2D
Package
Description
This package provides basic 3D geometry components.
This package provides basic 2D geometry components.
This package provides algorithms to generate the convex hull
for a set of points in an two-dimensional euclidean space.
This package provides basic geometry components on the 1-sphere.
Various examples.
Geometry examples.
-
Uses of Vector2D in org.hipparchus.geometry.euclidean.threed
Methods in org.hipparchus.geometry.euclidean.threed that return Vector2DModifier and TypeMethodDescriptionVector2D[][]
OutlineExtractor.getOutline
(PolyhedronsSet polyhedronsSet) Extract the outline of a polyhedrons set.Plane.toSubSpace
(Vector3D point) Transform a 3D space point into an in-plane point.Methods in org.hipparchus.geometry.euclidean.threed with parameters of type Vector2DModifier and TypeMethodDescriptionPlane.getPointAt
(Vector2D inPlane, double offset) Get one point from the 3D-space.Transform an in-plane point into a 3D space point.Method parameters in org.hipparchus.geometry.euclidean.threed with type arguments of type Vector2DModifier and TypeMethodDescriptionprotected SubPlane
Build a sub-hyperplane from an hyperplane and a region.Constructor parameters in org.hipparchus.geometry.euclidean.threed with type arguments of type Vector2D -
Uses of Vector2D in org.hipparchus.geometry.euclidean.twod
Fields in org.hipparchus.geometry.euclidean.twod declared as Vector2DModifier and TypeFieldDescriptionstatic final Vector2D
Vector2D.MINUS_I
Opposite of the first canonical vector (coordinates: -1, 0).static final Vector2D
Vector2D.MINUS_J
Opposite of the second canonical vector (coordinates: 0, -1).static final Vector2D
Vector2D.NaN
A vector with all coordinates set to NaN.static final Vector2D
Vector2D.NEGATIVE_INFINITY
A vector with all coordinates set to negative infinity.static final Vector2D
Vector2D.PLUS_I
First canonical vector (coordinates: 1, 0).static final Vector2D
Vector2D.PLUS_J
Second canonical vector (coordinates: 0, 1).static final Vector2D
Vector2D.POSITIVE_INFINITY
A vector with all coordinates set to positive infinity.static final Vector2D
Vector2D.ZERO
Origin (coordinates: 0, 0).Methods in org.hipparchus.geometry.euclidean.twod that return Vector2DModifier and TypeMethodDescriptionAdd a scaled vector to the instance.Add a vector to the instance.Line.arbitraryPoint()
Get an arbitrary point in the hyperplane.Segment.getEnd()
Get the end point of the segment.PolygonsSet.getInteriorPoint()
Get an interior point.SubLine.getInteriorPoint()
Get an interior point.Line.getPointAt
(Vector1D abscissa, double offset) Get one point from the plane.Segment.getStart()
Get the start point of the segment.Vector2D[][]
PolygonsSet.getVertices()
Get the vertices of the polygon.Vector2D.getZero()
Get the null vector of the vectorial space or origin point of the affine space.Line.intersection
(Line other) Get the intersection point of the instance and another line.SubLine.intersection
(SubLine subLine, boolean includeEndPoints) Get the intersection of the instance and another sub-line.Line.moveToOffset
(Vector2D point, double offset) Move point up to specified offset.Vector2D.moveTowards
(Vector2D other, double ratio) Move towards another point.Vector2D.negate()
Get the opposite of the instance.Parses a string to produce aVector
object.Vector2DFormat.parse
(String source, ParsePosition pos) Parses a string to produce aVector
object.Project a point to the hyperplane.Vector2D.scalarMultiply
(double a) Multiply the instance by a scalar.Subtract a scaled vector from the instance.Subtract a vector from the instance.Transform a sub-space point into a space point.FieldVector2D.toVector2D()
Convert to a constant vector without extra field parts.Methods in org.hipparchus.geometry.euclidean.twod that return types with arguments of type Vector2DModifier and TypeMethodDescriptionDiskGenerator.ballOnSupport
(List<Vector2D> support) Create a ball whose boundary lies on prescribed support points.static Transform
<Euclidean2D, Vector2D, Line, SubLine, Euclidean1D, Vector1D, OrientedPoint, SubOrientedPoint> Line.getTransform
(double cXX, double cYX, double cXY, double cYY, double cX1, double cY1) Get aTransform
embedding an affine transform.Split the instance in two parts by an hyperplane.Methods in org.hipparchus.geometry.euclidean.twod with parameters of type Vector2DModifier and TypeMethodDescriptionAdd a scaled vector to the instance.Add a vector to the instance.Add a scaled vector to the instance.Add a scaled vector to the instance.Add a vector to the instance.static <T extends CalculusFieldElement<T>>
TFieldVector2D.angle
(FieldVector2D<T> v1, Vector2D v2) Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D.angle
(Vector2D v1, FieldVector2D<T> v2) Compute the angular separation between two vectors.static double
Compute the angular separation between two vectors.boolean
Check if the line contains a point.FieldVector2D.crossProduct
(Vector2D p1, Vector2D p2) Compute the cross-product of the instance and the given points.double
Vector2D.crossProduct
(Vector2D p1, Vector2D p2) Compute the cross-product of the instance and the given points.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distance
(FieldVector2D<T> p1, Vector2D p2) Compute the distance between two vectors according to the L2 norm.Compute the distance between the instance and another vector according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distance
(Vector2D p1, FieldVector2D<T> p2) Compute the distance between two vectors according to the L2 norm.double
Compute the distance between the instance and a point.double
Calculates the shortest distance from a point to this line segment.double
Compute the distance between the instance and another point.static double
Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distance1
(FieldVector2D<T> p1, Vector2D p2) Compute the distance between two vectors according to the L2 norm.Compute the distance between the instance and another vector according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distance1
(Vector2D p1, FieldVector2D<T> p2) Compute the distance between two vectors according to the L2 norm.double
Compute the distance between the instance and another vector according to the L1 norm.static double
Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distanceInf
(FieldVector2D<T> p1, Vector2D p2) Compute the distance between two vectors according to the L∞ norm.FieldVector2D.distanceInf
(Vector2D v) Compute the distance between the instance and another vector according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distanceInf
(Vector2D p1, FieldVector2D<T> p2) Compute the distance between two vectors according to the L∞ norm.double
Vector2D.distanceInf
(Vector2D p) Compute the distance between the instance and another vector according to the L∞ norm.static double
Vector2D.distanceInf
(Vector2D p1, Vector2D p2) Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distanceSq
(FieldVector2D<T> p1, Vector2D p2) Compute the square of the distance between two vectors.FieldVector2D.distanceSq
(Vector2D v) Compute the square of the distance between the instance and another vector.static <T extends CalculusFieldElement<T>>
TFieldVector2D.distanceSq
(Vector2D p1, FieldVector2D<T> p2) Compute the square of the distance between two vectors.double
Vector2D.distanceSq
(Vector2D p) Compute the square of the distance between the instance and another vector.static double
Vector2D.distanceSq
(Vector2D p1, Vector2D p2) Compute the square of the distance between two vectors.FieldVector2D.dotProduct
(Vector2D v) Compute the dot-product of the instance and another vector.double
Vector2D.dotProduct
(Vector2D v) Compute the dot-product of the instance and another vector.double
Get the offset (oriented distance) of a point.Line.moveToOffset
(Vector2D point, double offset) Move point up to specified offset.Vector2D.moveTowards
(Vector2D other, double ratio) Move towards another point.static double
Vector2D.orientation
(Vector2D p, Vector2D q, Vector2D r) Compute the orientation of a triplet of points.Project a point to the hyperplane.void
Reset the instance as if built from a line and an angle.void
Reset the instance as if built from two points.Subtract a scaled vector from the instance.Subtract a vector from the instance.Subtract a scaled vector from the instance.Subtract a scaled vector from the instance.Subtract a vector from the instance.Line.toSubSpace
(Vector2D point) Transform a space point into a sub-space point.void
Line.translateToPoint
(Vector2D p) Translate the line to force it passing by a point.Method parameters in org.hipparchus.geometry.euclidean.twod with type arguments of type Vector2DModifier and TypeMethodDescriptionDiskGenerator.ballOnSupport
(List<Vector2D> support) Create a ball whose boundary lies on prescribed support points.Build a region using the instance as a prototype.Vector2DFormat.format
(Vector<Euclidean2D, Vector2D> vector, StringBuffer toAppendTo, FieldPosition pos) Formats aVector
object to produce a string.Constructors in org.hipparchus.geometry.euclidean.twod with parameters of type Vector2DModifierConstructorDescriptionFieldVector2D
(Field<T> field, Vector2D v) Build aFieldVector2D
from aVector2D
.FieldVector2D
(T a, Vector2D u) Multiplicative constructor Build a vector from another one and a scale factor.FieldVector2D
(T a1, Vector2D u1, T a2, Vector2D u2) Linear constructor.Linear constructor.Linear constructor.Build a line from a point and an angle.Build a line from two points.PolygonsSet
(double hyperplaneThickness, Vector2D... vertices) Build a polygon from a simple list of vertices.Build a segment.Build a segment.Create a sub-line from two endpoints.Multiplicative constructor Build a vector from another one and a scale factor.Linear constructor Build a vector from two other ones and corresponding scale factors.Linear constructor Build a vector from three other ones and corresponding scale factors.Vector2D
(double a1, Vector2D u1, double a2, Vector2D u2, double a3, Vector2D u3, double a4, Vector2D u4) Linear constructor Build a vector from four other ones and corresponding scale factors.Constructor parameters in org.hipparchus.geometry.euclidean.twod with type arguments of type Vector2DModifierConstructorDescriptionPolygonsSet
(BSPTree<Euclidean2D, Vector2D, Line, SubLine> tree, double tolerance) Build a polygons set from a BSP tree. -
Uses of Vector2D in org.hipparchus.geometry.euclidean.twod.hull
Methods in org.hipparchus.geometry.euclidean.twod.hull that return Vector2DModifier and TypeMethodDescriptionVector2D[]
ConvexHull2D.getVertices()
Get the vertices of the convex hull.Methods in org.hipparchus.geometry.euclidean.twod.hull that return types with arguments of type Vector2DModifier and TypeMethodDescriptionConvexHull2D.createRegion()
Returns a new region that is enclosed by the convex hull.MonotoneChain.findHullVertices
(Collection<Vector2D> points) Find the convex hull vertices from the set of input points.static Collection
<Vector2D> AklToussaintHeuristic.reducePoints
(Collection<Vector2D> points) Returns a point set that is reduced by all points for which it is safe to assume that they are not part of the convex hull.Method parameters in org.hipparchus.geometry.euclidean.twod.hull with type arguments of type Vector2DModifier and TypeMethodDescriptionMonotoneChain.findHullVertices
(Collection<Vector2D> points) Find the convex hull vertices from the set of input points.ConvexHullGenerator2D.generate
(Collection<Vector2D> points) Builds the convex hull from the set of input points.static Collection
<Vector2D> AklToussaintHeuristic.reducePoints
(Collection<Vector2D> points) Returns a point set that is reduced by all points for which it is safe to assume that they are not part of the convex hull.Constructors in org.hipparchus.geometry.euclidean.twod.hull with parameters of type Vector2DModifierConstructorDescriptionConvexHull2D
(Vector2D[] vertices, double tolerance) Simple constructor. -
Uses of Vector2D in org.hipparchus.geometry.spherical.oned
Methods in org.hipparchus.geometry.spherical.oned that return Vector2D -
Uses of Vector2D in org.hipparchus.samples
Methods in org.hipparchus.samples that return Vector2DModifier and TypeMethodDescriptionstatic Vector2D
ClusterAlgorithmComparison.generateNoiseVector
(RandomGenerator randomGenerator, double noise) Generate a random vector.Methods in org.hipparchus.samples that return types with arguments of type Vector2DModifier and TypeMethodDescriptionClusterAlgorithmComparison.makeBlobs
(int samples, int centers, double clusterStd, double min, double max, boolean shuffle, RandomGenerator random) Make blobs patterns.LowDiscrepancyGeneratorComparison.makeCircle
(int samples, RandomVectorGenerator generator) Generate points within a circle.ClusterAlgorithmComparison.makeCircles
(int samples, boolean shuffle, double noise, double factor, RandomGenerator random) Make circles patterns.ClusterAlgorithmComparison.makeMoons
(int samples, boolean shuffle, double noise, RandomGenerator random) Make Moons patterns.LowDiscrepancyGeneratorComparison.makeRandom
(int samples, RandomVectorGenerator generator) Generate points.ClusterAlgorithmComparison.makeSobol
(int samples) Make Sobol patterns.Normalize points.Method parameters in org.hipparchus.samples with type arguments of type Vector2DModifier and TypeMethodDescriptionstatic List
<DoublePoint> ClusterAlgorithmComparison.normalize
(List<Vector2D> input, double minX, double maxX, double minY, double maxY) Normolize points in a rectangular areaNormalize points.Constructor parameters in org.hipparchus.samples with type arguments of type Vector2D -
Uses of Vector2D in org.hipparchus.samples.geometry
Methods in org.hipparchus.samples.geometry that return types with arguments of type Vector2DModifier and TypeMethodDescriptionGeometryExample.createCircle
(int samples) Create a circle sprite.GeometryExample.createCross()
Create a cross sprite.GeometryExample.createRandomPoints
(int size) Create a list of random points.