Uses of Class
org.hipparchus.exception.MathRuntimeException
Packages that use MathRuntimeException
Package
Description
Common classes used throughout the Hipparchus library.
This package holds the main interfaces and basic building block classes
dealing with differentiation.
Univariate real functions interpolation algorithms.
Specialized exceptions for algorithms errors.
Kalman filter.
Kalman filter implementation for non-linear processes.
Kalman filter implementation for linear processes.
Unscented Kalman filter implementation.
This package is the top level package for geometry.
This package provides basic 1D geometry components.
This package provides basic 3D geometry components.
This package provides basic 2D geometry components.
This package provides basic geometry components on the 1-sphere.
This package provides basic geometry components on the 2-sphere.
Linear algebra support.
This package provides classes to solve Ordinary Differential Equations problems.
Correlations/Covariance computations.
Classes providing hypothesis testing.
Convenience routines and common data structures used throughout the Hipparchus library.
-
Uses of MathRuntimeException in org.hipparchus
Methods in org.hipparchus that throw MathRuntimeExceptionModifier and TypeMethodDescriptionCompute this ÷ a.FieldElement.reciprocal()Returns the multiplicative inverse ofthiselement. -
Uses of MathRuntimeException in org.hipparchus.analysis.differentiation
Methods in org.hipparchus.analysis.differentiation that throw MathRuntimeExceptionModifier and TypeMethodDescriptiondoubleDerivativeStructure.taylor(double... delta) Evaluate Taylor expansion a derivative structure.doubleDSCompiler.taylor(double[] ds, int dsOffset, double... delta) Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler.taylor(T[] ds, int dsOffset, double... delta) Evaluate Taylor expansion of a derivative structure.final <T extends CalculusFieldElement<T>>
TDSCompiler.taylor(T[] ds, int dsOffset, T... delta) Evaluate Taylor expansion of a derivative structure.FieldDerivativeStructure.taylor(double... delta) Evaluate Taylor expansion of a derivative structure.final TEvaluate Taylor expansion of a derivative structure. -
Uses of MathRuntimeException in org.hipparchus.analysis.interpolation
Methods in org.hipparchus.analysis.interpolation that throw MathRuntimeExceptionModifier and TypeMethodDescriptionfinal voidFieldHermiteInterpolator.addSamplePoint(T x, T[]... value) Add a sample point.voidHermiteInterpolator.addSamplePoint(double x, double[]... value) Add a sample point. -
Uses of MathRuntimeException in org.hipparchus.exception
Subclasses of MathRuntimeException in org.hipparchus.exceptionModifier and TypeClassDescriptionclassBase class for all preconditions violation exceptions.classBase class for all exceptions that signal that the process throwing the exception is in a state that does not comply with the set of states that it is designed to be in.Methods in org.hipparchus.exception that return MathRuntimeExceptionModifier and TypeMethodDescriptionstatic MathRuntimeExceptionMathRuntimeException.createInternalError()Create an exception for an internal error.static MathRuntimeExceptionMathRuntimeException.createInternalError(Throwable cause) Create an exception for an internal error. -
Uses of MathRuntimeException in org.hipparchus.filtering.kalman
Methods in org.hipparchus.filtering.kalman that throw MathRuntimeExceptionModifier and TypeMethodDescriptionKalmanFilter.estimationStep(T measurement) Perform one estimation step. -
Uses of MathRuntimeException in org.hipparchus.filtering.kalman.extended
Methods in org.hipparchus.filtering.kalman.extended that throw MathRuntimeExceptionModifier and TypeMethodDescriptionExtendedKalmanFilter.estimationStep(T measurement) Perform one estimation step. -
Uses of MathRuntimeException in org.hipparchus.filtering.kalman.linear
Methods in org.hipparchus.filtering.kalman.linear that throw MathRuntimeExceptionModifier and TypeMethodDescriptionLinearKalmanFilter.estimationStep(T measurement) Perform one estimation step. -
Uses of MathRuntimeException in org.hipparchus.filtering.kalman.unscented
Methods in org.hipparchus.filtering.kalman.unscented that throw MathRuntimeExceptionModifier and TypeMethodDescriptionUnscentedKalmanFilter.estimationStep(T measurement) Perform one estimation step. -
Uses of MathRuntimeException in org.hipparchus.geometry
Methods in org.hipparchus.geometry that throw MathRuntimeExceptionModifier and TypeMethodDescriptionSpace.getSubSpace()Get the n-1 dimension subspace of this space.default VVector.normalize()Get a normalized vector aligned with the instance. -
Uses of MathRuntimeException in org.hipparchus.geometry.euclidean.oned
Subclasses of MathRuntimeException in org.hipparchus.geometry.euclidean.onedModifier and TypeClassDescriptionstatic classSpecialized exception for inexistent sub-space. -
Uses of MathRuntimeException in org.hipparchus.geometry.euclidean.threed
Methods in org.hipparchus.geometry.euclidean.threed that throw MathRuntimeExceptionModifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
TFieldVector3D.angle(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.angle(FieldVector3D<T> v1, Vector3D v2) Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.angle(Vector3D v1, FieldVector3D<T> v2) Compute the angular separation between two vectors.static doubleCompute the angular separation between two vectors.PolyhedronsSet.getBRep()Get the boundary representation of the instance.FieldVector3D.normalize()Get a normalized vector aligned with the instance.FieldVector3D.orthogonal()Get a vector orthogonal to the instance.Vector3D.orthogonal()Get a vector orthogonal to the instance.voidReset the instance as if built from a point and a normal.Constructors in org.hipparchus.geometry.euclidean.threed that throw MathRuntimeExceptionModifierConstructorDescriptionFieldRotation(FieldVector3D<T> u, FieldVector3D<T> v) Build one of the rotations that transform one vector into another one.FieldRotation(FieldVector3D<T> u1, FieldVector3D<T> u2, FieldVector3D<T> v1, FieldVector3D<T> v2) Build the rotation that transforms a pair of vectors into another pair.Build a plane normal to a given direction and containing the origin.Build a plane from a point and a normal.Build a plane from three points.Build one of the rotations that transform one vector into another one.Build the rotation that transforms a pair of vectors into another pair. -
Uses of MathRuntimeException in org.hipparchus.geometry.euclidean.twod
Methods in org.hipparchus.geometry.euclidean.twod that throw MathRuntimeExceptionModifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
TFieldVector2D.angle(FieldVector2D<T> v1, FieldVector2D<T> v2) Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D.angle(FieldVector2D<T> v1, Vector2D v2) Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector2D.angle(Vector2D v1, FieldVector2D<T> v2) Compute the angular separation between two vectors.static doubleCompute the angular separation between two vectors.FieldVector2D.normalize()Get a normalized vector aligned with the instance. -
Uses of MathRuntimeException in org.hipparchus.geometry.spherical.oned
Subclasses of MathRuntimeException in org.hipparchus.geometry.spherical.onedModifier and TypeClassDescriptionstatic classSpecialized exception for inconsistent BSP tree state inconsistency.static classSpecialized exception for inexistent sub-space. -
Uses of MathRuntimeException in org.hipparchus.geometry.spherical.twod
Constructors in org.hipparchus.geometry.spherical.twod that throw MathRuntimeException -
Uses of MathRuntimeException in org.hipparchus.linear
Methods in org.hipparchus.linear that throw MathRuntimeExceptionModifier and TypeMethodDescriptiondoubleRealVector.cosine(RealVector v) Computes the cosine of the angle between this vector and the argument.ArrayFieldVector.ebeDivide(ArrayFieldVector<T> v) Element-by-element division.ArrayFieldVector.ebeDivide(FieldVector<T> v) Element-by-element division.FieldVector.ebeDivide(FieldVector<T> v) Element-by-element division.SparseFieldVector.ebeDivide(FieldVector<T> v) Element-by-element division.booleanTest for the equality of two real vectors.intRealVector.hashCode().Map a division operation to each entry.Map a division operation to each entry.Map a division operation to each entry.ArrayFieldVector.mapDivideToSelf(T d) Map a division operation to each entry.FieldVector.mapDivideToSelf(T d) Map a division operation to each entry.SparseFieldVector.mapDivideToSelf(T d) Map a division operation to each entry.ArrayFieldVector.mapInv()Map the 1/x function to each entry.FieldVector.mapInv()Map the 1/x function to each entry.SparseFieldVector.mapInv()Map the 1/x function to each entry.ArrayFieldVector.mapInvToSelf()Map the 1/x function to each entry.FieldVector.mapInvToSelf()Map the 1/x function to each entry.SparseFieldVector.mapInvToSelf()Map the 1/x function to each entry.ArrayFieldVector.projection(ArrayFieldVector<T> v) Find the orthogonal projection of this vector onto another vector.ArrayFieldVector.projection(FieldVector<T> v) Find the orthogonal projection of this vector onto another vector.FieldVector.projection(FieldVector<T> v) Find the orthogonal projection of this vector onto another vector.RealVector.projection(RealVector v) Find the orthogonal projection of this vector onto another vector.SparseFieldVector.projection(FieldVector<T> v) Find the orthogonal projection of this vector onto another vector.voidRealVector.SparseEntryIterator.remove()static voidMatrixUtils.solveLowerTriangularSystem(RealMatrix rm, RealVector b) Solve a system of composed of a Lower Triangular MatrixRealMatrix.static voidMatrixUtils.solveUpperTriangularSystem(RealMatrix rm, RealVector b) Solver a system composed of an Upper Triangular MatrixRealMatrix.voidOpenMapRealVector.unitize()Converts this vector into a unit vector.voidRealVector.unitize()Converts this vector into a unit vector.OpenMapRealVector.unitVector()Creates a unit vector pointing in the direction of this vector.RealVector.unitVector()Creates a unit vector pointing in the direction of this vector.Constructors in org.hipparchus.linear that throw MathRuntimeExceptionModifierConstructorDescriptionEigenDecompositionNonSymmetric(RealMatrix matrix, double epsilon) Calculates the eigen decomposition of the given real matrix.EigenDecompositionSymmetric(RealMatrix matrix, double epsilon, boolean decreasing) Calculates the eigen decomposition of the given real matrix. -
Uses of MathRuntimeException in org.hipparchus.ode
Subclasses of MathRuntimeException in org.hipparchus.odeModifier and TypeClassDescriptionstatic classSpecial exception for equations mismatch. -
Uses of MathRuntimeException in org.hipparchus.stat.correlation
Methods in org.hipparchus.stat.correlation that throw MathRuntimeExceptionModifier and TypeMethodDescriptionintStorelessCovariance.getN()ThisCovariancemethod is not supported by aStorelessCovariance, since the number of bivariate observations does not have to be the same for different pairs of covariates - i.e., N as defined inCovariance.getN()is undefined. -
Uses of MathRuntimeException in org.hipparchus.stat.inference
Methods in org.hipparchus.stat.inference that throw MathRuntimeExceptionModifier and TypeMethodDescriptiondoubleKolmogorovSmirnovTest.cdf(double d, int n) CalculatesP(D_n < d)using the method described in [1] with quick decisions for extreme values given in [2] (see above).doubleKolmogorovSmirnovTest.cdf(double d, int n, boolean exact) CalculatesP(D_n < d)using method described in [1] with quick decisions for extreme values given in [2] (see above).doubleKolmogorovSmirnovTest.cdfExact(double d, int n) CalculatesP(D_n < d). -
Uses of MathRuntimeException in org.hipparchus.util
Methods in org.hipparchus.util that throw MathRuntimeExceptionModifier and TypeMethodDescriptionstatic intArithmeticUtils.addAndCheck(int x, int y) Add two integers, checking for overflow.static longArithmeticUtils.addAndCheck(long a, long b) Add two long integers, checking for overflow.static intFastMath.addExact(int a, int b) Add two numbers, detecting overflows.static longFastMath.addExact(long a, long b) Add two numbers, detecting overflows.static longCombinatoricsUtils.binomialCoefficient(int n, int k) Returns an exact representation of the Binomial Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set.static doubleCombinatoricsUtils.binomialCoefficientDouble(int n, int k) Returns adoublerepresentation of the Binomial Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set.static doubleCombinatoricsUtils.binomialCoefficientLog(int n, int k) Returns the naturallogof the Binomial Coefficient, "n choose k", the number ofk-element subsets that can be selected from ann-element set.static intFastMath.ceilDiv(int a, int b) Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath.ceilDiv(long a, int b) Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath.ceilDiv(long a, long b) Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static intFastMath.ceilDivExact(int a, int b) Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath.ceilDivExact(long a, long b) Finds q such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static intFastMath.ceilMod(int a, int b) Finds r such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static intFastMath.ceilMod(long a, int b) Finds r such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static longFastMath.ceilMod(long a, long b) Finds r such thata = q b + rwithb < r <= 0ifb > 0and0 <= r < bifb < 0.static byteMathUtils.copySign(byte magnitude, byte sign) Returns the first argument with the sign of the second argument.static intMathUtils.copySign(int magnitude, int sign) Returns the first argument with the sign of the second argument.static longMathUtils.copySign(long magnitude, long sign) Returns the first argument with the sign of the second argument.static shortMathUtils.copySign(short magnitude, short sign) Returns the first argument with the sign of the second argument.static intFastMath.decrementExact(int n) Decrement a number, detecting overflows.static longFastMath.decrementExact(long n) Decrement a number, detecting overflows.Compute this ÷ a.static intFastMath.floorDiv(int a, int b) Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static longFastMath.floorDiv(long a, int b) Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static longFastMath.floorDiv(long a, long b) Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static intFastMath.floorDivExact(int a, int b) Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static longFastMath.floorDivExact(long a, long b) Finds q such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static intFastMath.floorMod(int a, int b) Finds r such thata = q b + rwith0 <= r < bifb > 0andb < r <= 0ifb < 0.static intArithmeticUtils.gcd(int p, int q) Computes the greatest common divisor of the absolute value of two numbers, using a modified version of the "binary gcd" method.static longArithmeticUtils.gcd(long p, long q) Gets the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations.static intFastMath.incrementExact(int n) Increment a number, detecting overflows.static longFastMath.incrementExact(long n) Increment a number, detecting overflows.static intArithmeticUtils.lcm(int a, int b) Returns the least common multiple of the absolute value of two numbers, using the formulalcm(a,b) = (a / gcd(a,b)) * b.static longArithmeticUtils.lcm(long a, long b) Returns the least common multiple of the absolute value of two numbers, using the formulalcm(a,b) = (a / gcd(a,b)) * b.static intArithmeticUtils.mulAndCheck(int x, int y) Multiply two integers, checking for overflow.static longArithmeticUtils.mulAndCheck(long a, long b) Multiply two long integers, checking for overflow.static double[]MathArrays.normalizeArray(double[] values, double normalizedSum) Normalizes an array to make it sum to a specified value.static intArithmeticUtils.pow(int k, int e) Raise an int to an int power.static longArithmeticUtils.pow(long k, int e) Raise a long to an int power.BigReal.reciprocal()Returns the multiplicative inverse ofthiselement.static floatPrecision.round(float x, int scale, RoundingMode roundingMethod) Rounds the given value to the specified number of decimal places.static longCombinatoricsUtils.stirlingS2(int n, int k) Returns the Stirling number of the second kind, "S(n,k)", the number of ways of partitioning ann-element set intoknon-empty subsets.static intArithmeticUtils.subAndCheck(int x, int y) Subtract two integers, checking for overflow.static longArithmeticUtils.subAndCheck(long a, long b) Subtract two long integers, checking for overflow.static intFastMath.toIntExact(long n) Convert a long to interger, detecting overflows