Uses of Class
org.hipparchus.exception.MathIllegalStateException
Packages that use MathIllegalStateException
Package
Description
Numerical integration (quadrature) algorithms for univariate real functions.
Root finding algorithms, for univariate real functions.
Clustering algorithms.
Complex number type and implementations of complex transcendental
functions.
Fraction number type and fraction number formatting.
This package is the top level package for geometry.
This package provides basic 1D geometry components.
This package provides basic 3D geometry components.
This package provides basic 2D geometry components.
This package provides algorithms to generate the convex hull
for a set of points in an two-dimensional euclidean space.
This package provides interfaces and classes related to the convex hull problem.
This package provides basic geometry components on the 1-sphere.
This package provides basic geometry components on the 2-sphere.
Linear algebra support.
This package provides classes to solve Ordinary Differential Equations problems.
Events
This package provides classes to solve non-stiff Ordinary Differential Equations problems.
This package provides classes implementing interpolators for dense outputs of ODE integrators.
This package provides classes to handle sampling steps during
Ordinary Differential Equations integration.
Generally, optimizers are algorithms that will either
minimize or
maximize
a scalar function, called the
objective
function.Optimization algorithms for linear constrained problems.
Algorithms for optimizing a scalar function.
This package provides optimization algorithms that require derivatives.
This package provides optimization algorithms that do not require derivatives.
This package provides algorithms that minimize the residuals
between observations and model values.
One-dimensional optimization algorithms.
Random number and random data generators.
Implementations of special functions such as Beta and Gamma.
Generic univariate and multivariate summary statistic objects.
Statistical methods for fitting distributions.
Classes providing hypothesis testing.
Convenience routines and common data structures used throughout the Hipparchus library.
-
Uses of MathIllegalStateException in org.hipparchus.analysis.integration
Methods in org.hipparchus.analysis.integration that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected TBaseAbstractFieldUnivariateIntegrator.computeObjectiveValue(T point) Compute the objective function value.protected doubleBaseAbstractUnivariateIntegrator.computeObjectiveValue(double point) Compute the objective function value.protected abstract TBaseAbstractFieldUnivariateIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected abstract doubleBaseAbstractUnivariateIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected TFieldMidPointIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected TFieldRombergIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected TFieldSimpsonIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected TFieldTrapezoidIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected TIterativeLegendreFieldGaussIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected doubleIterativeLegendreGaussIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected doubleMidPointIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected doubleRombergIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected doubleSimpsonIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.protected doubleTrapezoidIntegrator.doIntegrate()Method for implementing actual integration algorithms in derived classes.BaseAbstractFieldUnivariateIntegrator.integrate(int maxEval, CalculusFieldUnivariateFunction<T> f, T lower, T upper) Integrate the function in the given interval.doubleBaseAbstractUnivariateIntegrator.integrate(int maxEval, UnivariateFunction f, double lower, double upper) Integrate the function in the given interval.FieldUnivariateIntegrator.integrate(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max) Integrate the function in the given interval.doubleUnivariateIntegrator.integrate(int maxEval, UnivariateFunction f, double min, double max) Integrate the function in the given interval. -
Uses of MathIllegalStateException in org.hipparchus.analysis.solvers
Methods in org.hipparchus.analysis.solvers that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected doubleBaseAbstractUnivariateSolver.computeObjectiveValue(double point) Compute the objective function value.protected DerivativeStructureAbstractUnivariateDifferentiableSolver.computeObjectiveValueAndDerivative(double point) Compute the objective function value.protected abstract doubleBaseAbstractUnivariateSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected final doubleBaseSecantSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected doubleBisectionSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected doubleBrentSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.doubleLaguerreSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected doubleMullerSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected doubleMullerSolver2.doSolve()Method for implementing actual optimization algorithms in derived classes.protected doubleNewtonRaphsonSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected doubleRiddersSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected final doubleSecantSolver.doSolve()Method for implementing actual optimization algorithms in derived classes.protected final BracketedUnivariateSolver.IntervalBaseSecantSolver.doSolveInterval()Find a root and return the containing interval.protected voidBaseAbstractUnivariateSolver.incrementEvaluationCount()Increment the evaluation count by one.doubleSolve for a zero in the vicinity ofstartValue.doubleSolve for a zero in the given interval, start atstartValue.doubleSolve for a zero root in the given interval.doubleSolve for a zero in the given interval, start atstartValue.doubleBracketingNthOrderBrentSolver.solve(int maxEval, UnivariateFunction f, double min, double max, double startValue, AllowedSolution allowedSolution) Solve for a zero in the given interval, start atstartValue.doubleBracketingNthOrderBrentSolver.solve(int maxEval, UnivariateFunction f, double min, double max, AllowedSolution allowedSolution) Solve for a zero in the given interval.doubleNewtonRaphsonSolver.solve(int maxEval, UnivariateDifferentiableFunction f, double min, double max) Find a zero near the midpoint ofminandmax.Complex[]LaguerreSolver.solveAllComplex(double[] coefficients, double initial) Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.Complex[]LaguerreSolver.solveAllComplex(double[] coefficients, int maxEval, double initial) Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.LaguerreSolver.solveComplex(double[] coefficients, double initial) Find a complex root for the polynomial with the given coefficients, starting from the given initial value.BaseSecantSolver.solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue) Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedRealFieldUnivariateSolver.solveInterval(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max) Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedRealFieldUnivariateSolver.solveInterval(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max, T startValue) Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedUnivariateSolver.solveInterval(int maxEval, F f, double min, double max) Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketedUnivariateSolver.solveInterval(int maxEval, F f, double min, double max, double startValue) Solve for a zero in the given interval and return a tolerance interval surrounding the root.BracketingNthOrderBrentSolver.solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue) Solve for a zero in the given interval and return a tolerance interval surrounding the root.FieldBracketingNthOrderBrentSolver.solveInterval(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max, T startValue) Solve for a zero in the given interval and return a tolerance interval surrounding the root. -
Uses of MathIllegalStateException in org.hipparchus.clustering
Methods in org.hipparchus.clustering that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionClusterer.cluster(Collection<T> points) Perform a cluster analysis on the given set ofClusterableinstances.KMeansPlusPlusClusterer.cluster(Collection<T> points) Runs the K-means++ clustering algorithm.MultiKMeansPlusPlusClusterer.cluster(Collection<T> points) Runs the K-means++ clustering algorithm. -
Uses of MathIllegalStateException in org.hipparchus.complex
Methods in org.hipparchus.complex that throw MathIllegalStateExceptionModifier and TypeMethodDescriptiondoubleRootsOfUnity.getImaginary(int k) Get the imaginary part of thek-thn-th root of unity.doubleRootsOfUnity.getReal(int k) Get the real part of thek-thn-th root of unity.booleanRootsOfUnity.isCounterClockWise()Parses a string to produce aComplexobject. -
Uses of MathIllegalStateException in org.hipparchus.fraction
Methods in org.hipparchus.fraction that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionFractionFormat.format(Object obj, StringBuffer toAppendTo, FieldPosition pos) Formats an object and appends the result to a StringBuffer.Parses a string to produce aBigFractionobject.Parses a string to produce aFractionobject.Constructors in org.hipparchus.fraction that throw MathIllegalStateExceptionModifierConstructorDescriptionBigFraction(double value, double epsilon, int maxIterations) Create a fraction given the double value and maximum error allowed.BigFraction(double value, long maxDenominator) Create a fraction given the double value and maximum denominator.Fraction(double value) Create a fraction given the double value.Fraction(double value, double epsilon, int maxIterations) Create a fraction given the double value and maximum error allowed.Fraction(double value, int maxDenominator) Create a fraction given the double value and maximum denominator. -
Uses of MathIllegalStateException in org.hipparchus.geometry
Methods in org.hipparchus.geometry that throw MathIllegalStateException -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.oned
Methods in org.hipparchus.geometry.euclidean.oned that throw MathIllegalStateException -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.threed
Methods in org.hipparchus.geometry.euclidean.threed that throw MathIllegalStateException -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.twod
Methods in org.hipparchus.geometry.euclidean.twod that throw MathIllegalStateException -
Uses of MathIllegalStateException in org.hipparchus.geometry.euclidean.twod.hull
Methods in org.hipparchus.geometry.euclidean.twod.hull that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionConvexHullGenerator2D.generate(Collection<Vector2D> points) Builds the convex hull from the set of input points. -
Uses of MathIllegalStateException in org.hipparchus.geometry.hull
Methods in org.hipparchus.geometry.hull that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionConvexHull<S, P, H, I> ConvexHullGenerator.generate(Collection<P> points) Builds the convex hull from the set of input points. -
Uses of MathIllegalStateException in org.hipparchus.geometry.spherical.oned
Subclasses of MathIllegalStateException in org.hipparchus.geometry.spherical.onedModifier and TypeClassDescriptionstatic classSpecialized exception for inconsistent BSP tree state inconsistency. -
Uses of MathIllegalStateException in org.hipparchus.geometry.spherical.twod
Methods in org.hipparchus.geometry.spherical.twod that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected voidSphericalPolygonsSet.computeGeometricalProperties()Compute some geometrical properties.SphericalPolygonsSet.getBoundaryLoops()Get the boundary loops of the polygon. -
Uses of MathIllegalStateException in org.hipparchus.linear
Methods in org.hipparchus.linear that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionIterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.IterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, boolean goodb, double shift) Returns the solution to the system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.ConjugateGradient.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorPreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b. -
Uses of MathIllegalStateException in org.hipparchus.ode
Methods in org.hipparchus.ode that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected FieldODEStateAndDerivative<T> AbstractFieldIntegrator.acceptStep(AbstractFieldODEStateInterpolator<T> interpolator, T tEnd) Accept a step, triggering events and step handlers.protected ODEStateAndDerivativeAbstractIntegrator.acceptStep(AbstractODEStateInterpolator interpolator, double tEnd) Accept a step, triggering events and step handlers.voidDenseOutputModel.append(DenseOutputModel model) Append another model at the end of the instance.voidFieldDenseOutputModel.append(FieldDenseOutputModel<T> model) Append another model at the end of the instance.T[]AbstractFieldIntegrator.computeDerivatives(T t, T[] y) Compute the derivatives and check the number of evaluations.double[]AbstractIntegrator.computeDerivatives(double t, double[] y) Compute the derivatives and check the number of evaluations.Complex[]ComplexSecondaryODE.computeDerivatives(double t, Complex[] primary, Complex[] primaryDot, Complex[] secondary) Compute the derivatives related to the secondary state parameters.double[]ExpandableODE.computeDerivatives(double t, double[] y) Get the current time derivative of the complete state vector.T[]FieldExpandableODE.computeDerivatives(T t, T[] y) Get the current time derivative of the complete state vector.T[]FieldSecondaryODE.computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary) Compute the derivatives related to the secondary state parameters.double[]SecondaryODE.computeDerivatives(double t, double[] primary, double[] primaryDot, double[] secondary) Compute the derivatives related to the secondary state parameters.double[][]ODEJacobiansProvider.computeMainStateJacobian(double t, double[] y, double[] yDot) Compute the Jacobian matrix of ODE with respect to state.double[]NamedParameterJacobianProvider.computeParameterJacobian(double t, double[] y, double[] yDot, String paramName) Compute the Jacobian matrix of ODE with respect to one parameter.FieldODEIntegrator.integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime) Integrate the differential equations up to the given time.ODEIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.default ODEStateAndDerivativeODEIntegrator.integrate(OrdinaryDifferentialEquation equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.protected voidMultistepFieldIntegrator.start(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T t) Start the integration.protected voidMultistepIntegrator.start(ExpandableODE equations, ODEState initialState, double finalTime) Start the integration. -
Uses of MathIllegalStateException in org.hipparchus.ode.events
Methods in org.hipparchus.ode.events that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionbooleanDetectorBasedEventState.evaluateStep(ODEStateInterpolator interpolator) Evaluate the impact of the proposed step on the handler.booleanEventState.evaluateStep(ODEStateInterpolator interpolator) Evaluate the impact of the proposed step on the handler.booleanFieldDetectorBasedEventState.evaluateStep(FieldODEStateInterpolator<T> interpolator) Evaluate the impact of the proposed step on the event handler.booleanFieldEventState.evaluateStep(FieldODEStateInterpolator<T> interpolator) Evaluate the impact of the proposed step on the event handler.voidDetectorBasedEventState.reinitializeBegin(ODEStateInterpolator interpolator) Reinitialize the beginning of the step.voidFieldDetectorBasedEventState.reinitializeBegin(FieldODEStateInterpolator<T> interpolator) Reinitialize the beginning of the step. -
Uses of MathIllegalStateException in org.hipparchus.ode.nonstiff
Methods in org.hipparchus.ode.nonstiff that throw MathIllegalStateExceptionModifier and TypeMethodDescriptiondoubleAdaptiveStepsizeFieldIntegrator.initializeStep(boolean forward, int order, T[] scale, FieldODEStateAndDerivative<T> state0) Initialize the integration step.doubleAdaptiveStepsizeIntegrator.initializeStep(boolean forward, int order, double[] scale, ODEStateAndDerivative state0) Initialize the integration step.AdamsFieldIntegrator.integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime) Integrate the differential equations up to the given time.AdamsIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.EmbeddedRungeKuttaFieldIntegrator.integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime) Integrate the differential equations up to the given time.EmbeddedRungeKuttaIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.FixedStepRungeKuttaFieldIntegrator.integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime) Integrate the differential equations up to the given time.FixedStepRungeKuttaIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.GraggBulirschStoerIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time. -
Uses of MathIllegalStateException in org.hipparchus.ode.nonstiff.interpolators
Methods in org.hipparchus.ode.nonstiff.interpolators that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected FieldODEStateAndDerivative<T> DormandPrince853FieldStateInterpolator.computeInterpolatedStateAndDerivatives(FieldEquationsMapper<T> mapper, T time, T theta, T thetaH, T oneMinusThetaH) Compute the state and derivatives at the interpolated time. -
Uses of MathIllegalStateException in org.hipparchus.ode.sampling
Methods in org.hipparchus.ode.sampling that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected abstract FieldODEStateAndDerivative<T> AbstractFieldODEStateInterpolator.computeInterpolatedStateAndDerivatives(FieldEquationsMapper<T> equationsMapper, T time, T theta, T thetaH, T oneMinusThetaH) Compute the state and derivatives at the interpolated time.protected abstract ODEStateAndDerivativeAbstractODEStateInterpolator.computeInterpolatedStateAndDerivatives(EquationsMapper equationsMapper, double time, double theta, double thetaH, double oneMinusThetaH) Compute the state and derivatives at the interpolated time. -
Uses of MathIllegalStateException in org.hipparchus.optim
Methods in org.hipparchus.optim that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected voidBaseOptimizer.incrementEvaluationCount()Increment the evaluation count.protected voidBaseOptimizer.incrementIterationCount()Increment the iteration count.BaseOptimizer.optimize()Performs the optimization.BaseOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.linear
Methods in org.hipparchus.optim.linear that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionprotected voidSimplexSolver.doIteration(org.hipparchus.optim.linear.SimplexTableau tableau) Runs one iteration of the Simplex method on the given model.SimplexSolver.doOptimize()Performs the bulk of the optimization algorithm.LinearOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization.SimplexSolver.optimize(OptimizationData... optData) Stores data and performs the optimization.protected voidSimplexSolver.solvePhase1(org.hipparchus.optim.linear.SimplexTableau tableau) Solves Phase 1 of the Simplex method. -
Uses of MathIllegalStateException in org.hipparchus.optim.nonlinear.scalar
Methods in org.hipparchus.optim.nonlinear.scalar that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionGradientMultivariateOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization.MultivariateOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.nonlinear.scalar.gradient
Methods in org.hipparchus.optim.nonlinear.scalar.gradient that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionNonLinearConjugateGradientOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.nonlinear.scalar.noderiv
Methods in org.hipparchus.optim.nonlinear.scalar.noderiv that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionCMAESOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.nonlinear.vector.constrained
Methods in org.hipparchus.optim.nonlinear.vector.constrained that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionConstraintOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.optim.univariate
Methods in org.hipparchus.optim.univariate that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionUnivariateOptimizer.optimize(OptimizationData... optData) Stores data and performs the optimization. -
Uses of MathIllegalStateException in org.hipparchus.random
Constructors in org.hipparchus.random that throw MathIllegalStateExceptionModifierConstructorDescriptionSobolSequenceGenerator(int dimension, InputStream is) Construct a new Sobol sequence generator for the given space dimension with direction vectors loaded from the given stream. -
Uses of MathIllegalStateException in org.hipparchus.special
Methods in org.hipparchus.special that throw MathIllegalStateException -
Uses of MathIllegalStateException in org.hipparchus.stat.descriptive
Methods in org.hipparchus.stat.descriptive that throw MathIllegalStateExceptionModifier and TypeMethodDescriptionvoidDescriptiveStatistics.removeMostRecentValue()Removes the most recent value from the dataset.doubleDescriptiveStatistics.replaceMostRecentValue(double v) Replaces the most recently stored value with the given value. -
Uses of MathIllegalStateException in org.hipparchus.stat.fitting
Methods in org.hipparchus.stat.fitting that throw MathIllegalStateExceptionModifier and TypeMethodDescriptiondoubleEmpiricalDistribution.getNextValue()Generates a random value from this distribution. -
Uses of MathIllegalStateException in org.hipparchus.stat.inference
Methods in org.hipparchus.stat.inference that throw MathIllegalStateExceptionModifier and TypeMethodDescriptiondoubleOneWayAnova.anovaPValue(Collection<double[]> categoryData) Computes the ANOVA P-value for a collection ofdouble[]arrays.doubleOneWayAnova.anovaPValue(Collection<StreamingStatistics> categoryData, boolean allowOneElementData) Computes the ANOVA P-value for a collection ofStreamingStatistics.booleanOneWayAnova.anovaTest(Collection<double[]> categoryData, double alpha) Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.doubleChiSquareTest.chiSquareTest(double[] expected, long[] observed) Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobservedfrequency counts to those in theexpectedarray.booleanChiSquareTest.chiSquareTest(double[] expected, long[] observed, double alpha) Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.doubleChiSquareTest.chiSquareTest(long[][] counts) Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.booleanChiSquareTest.chiSquareTest(long[][] counts, double alpha) Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha.static doubleInferenceTestUtils.chiSquareTest(double[] expected, long[] observed) Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobservedfrequency counts to those in theexpectedarray.static booleanInferenceTestUtils.chiSquareTest(double[] expected, long[] observed, double alpha) Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.static doubleInferenceTestUtils.chiSquareTest(long[][] counts) Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.static booleanInferenceTestUtils.chiSquareTest(long[][] counts, double alpha) Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha.doubleChiSquareTest.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2) Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1andobserved2.booleanChiSquareTest.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha) Performs a Chi-Square two sample test comparing two binned data sets.static doubleInferenceTestUtils.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2) Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1andobserved2.static booleanInferenceTestUtils.chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha) Performs a Chi-Square two sample test comparing two binned data sets.doubleGTest.gTest(double[] expected, long[] observed) Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobservedfrequency counts to those in theexpectedarray.booleanGTest.gTest(double[] expected, long[] observed, double alpha) Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.static doubleInferenceTestUtils.gTest(double[] expected, long[] observed) Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobservedfrequency counts to those in theexpectedarray.static booleanInferenceTestUtils.gTest(double[] expected, long[] observed, double alpha) Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.doubleGTest.gTestDataSetsComparison(long[] observed1, long[] observed2) Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts inobserved1andobserved2.booleanGTest.gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha) Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.static doubleInferenceTestUtils.gTestDataSetsComparison(long[] observed1, long[] observed2) Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts inobserved1andobserved2.static booleanInferenceTestUtils.gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha) Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.doubleGTest.gTestIntrinsic(double[] expected, long[] observed) Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H. 2009.static doubleInferenceTestUtils.gTestIntrinsic(double[] expected, long[] observed) Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H. 2009.static doubleInferenceTestUtils.homoscedasticTTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.static booleanInferenceTestUtils.homoscedasticTTest(double[] sample1, double[] sample2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha, assuming that the subpopulation variances are equal.static doubleInferenceTestUtils.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.doubleTTest.homoscedasticTTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.booleanTTest.homoscedasticTTest(double[] sample1, double[] sample2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha, assuming that the subpopulation variances are equal.protected doubleTTest.homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2) Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.doubleTTest.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.static doubleInferenceTestUtils.oneWayAnovaPValue(Collection<double[]> categoryData) Computes the ANOVA P-value for a collection ofdouble[]arrays.static booleanInferenceTestUtils.oneWayAnovaTest(Collection<double[]> categoryData, double alpha) Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.static doubleInferenceTestUtils.pairedTTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.static booleanInferenceTestUtils.pairedTTest(double[] sample1, double[] sample2, double alpha) Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1andsample2is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha.doubleTTest.pairedTTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.booleanTTest.pairedTTest(double[] sample1, double[] sample2, double alpha) Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1andsample2is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha.static doubleInferenceTestUtils.tTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.static booleanInferenceTestUtils.tTest(double[] sample1, double[] sample2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha.static doubleInferenceTestUtils.tTest(double mu, double[] sample) Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu.static booleanInferenceTestUtils.tTest(double mu, double[] sample, double alpha) Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsampleis drawn equalsmu.static doubleInferenceTestUtils.tTest(double mu, StatisticalSummary sampleStats) Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStatswith the constantmu.static booleanInferenceTestUtils.tTest(double mu, StatisticalSummary sampleStats, double alpha) Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystatsis drawn equalsmu.static doubleInferenceTestUtils.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.static booleanInferenceTestUtils.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1andsampleStats2describe datasets drawn from populations with the same mean, with significance levelalpha.doubleTTest.tTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.booleanTTest.tTest(double[] sample1, double[] sample2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha.doubleTTest.tTest(double mu, double[] sample) Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu.booleanTTest.tTest(double mu, double[] sample, double alpha) Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsampleis drawn equalsmu.protected doubleTTest.tTest(double m, double mu, double v, double n) Computes p-value for 2-sided, 1-sample t-test.protected doubleTTest.tTest(double m1, double m2, double v1, double v2, double n1, double n2) Computes p-value for 2-sided, 2-sample t-test.doubleTTest.tTest(double mu, StatisticalSummary sampleStats) Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStatswith the constantmu.booleanTTest.tTest(double mu, StatisticalSummary sampleStats, double alpha) Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystatsis drawn equalsmu.doubleTTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.booleanTTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1andsampleStats2describe datasets drawn from populations with the same mean, with significance levelalpha.doubleWilcoxonSignedRankTest.wilcoxonSignedRankTest(double[] x, double[] y, boolean exactPValue) Returns the observed significance level, or p-value, associated with a Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample. -
Uses of MathIllegalStateException in org.hipparchus.util
Methods in org.hipparchus.util that throw MathIllegalStateExceptionModifier and TypeMethodDescriptiondoubleContinuedFraction.evaluate(double x) Evaluates the continued fraction at the value x.doubleContinuedFraction.evaluate(double x, double epsilon) Evaluates the continued fraction at the value x.doubleContinuedFraction.evaluate(double x, double epsilon, int maxIterations) Evaluates the continued fraction at the value x.doubleContinuedFraction.evaluate(double x, int maxIterations) Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate(T x) Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate(T x, double epsilon) Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate(T x, double epsilon, int maxIterations) Evaluates the continued fraction at the value x.<T extends CalculusFieldElement<T>>
TFieldContinuedFraction.evaluate(T x, int maxIterations) Evaluates the continued fraction at the value x.voidIterationManager.incrementIterationCount()Increments the iteration count by one, and throws an exception if the maximum number of iterations is reached.doubleResizableDoubleArray.substituteMostRecentElement(double value) Substitutesvaluefor the most recently added value.voidIncrementor.MaxCountExceededCallback.trigger(int maximalCount) Function called when the maximal count has been reached.