Package org.hipparchus.analysis.solvers
Class BaseSecantSolver
java.lang.Object
org.hipparchus.analysis.solvers.BaseAbstractUnivariateSolver<UnivariateFunction>
org.hipparchus.analysis.solvers.AbstractUnivariateSolver
org.hipparchus.analysis.solvers.BaseSecantSolver
- All Implemented Interfaces:
BaseUnivariateSolver<UnivariateFunction>,BracketedUnivariateSolver<UnivariateFunction>,UnivariateSolver
- Direct Known Subclasses:
IllinoisSolver,PegasusSolver,RegulaFalsiSolver
public abstract class BaseSecantSolver
extends AbstractUnivariateSolver
implements BracketedUnivariateSolver<UnivariateFunction>
Base class for all bracketing Secant-based methods for root-finding
(approximating a zero of a univariate real function).
Implementation of the Regula Falsi and
Illinois methods is based on the
following article: M. Dowell and P. Jarratt,
A modified regula falsi method for computing the root of an
equation, BIT Numerical Mathematics, volume 11, number 2,
pages 168-174, Springer, 1971.
Implementation of the Pegasus method is
based on the following article: M. Dowell and P. Jarratt,
The "Pegasus" method for computing the root of an equation,
BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer,
1972.
The Secant method is not a
bracketing method, so it is not implemented here. It has a separate
implementation.
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionprotected static enumSecant-based root-finding methods.Nested classes/interfaces inherited from interface org.hipparchus.analysis.solvers.BracketedUnivariateSolver
BracketedUnivariateSolver.Interval -
Field Summary
FieldsModifier and TypeFieldDescriptionprotected static final doubleDefault absolute accuracy. -
Constructor Summary
ConstructorsModifierConstructorDescriptionprotectedBaseSecantSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy, BaseSecantSolver.Method method) Construct a solver.protectedBaseSecantSolver(double relativeAccuracy, double absoluteAccuracy, BaseSecantSolver.Method method) Construct a solver.protectedBaseSecantSolver(double absoluteAccuracy, BaseSecantSolver.Method method) Construct a solver. -
Method Summary
Modifier and TypeMethodDescriptionprotected final doubledoSolve()Method for implementing actual optimization algorithms in derived classes.protected final BracketedUnivariateSolver.IntervalFind a root and return the containing interval.doublesolve(int maxEval, UnivariateFunction f, double min, double max, double startValue) Solve for a zero in the given interval, start atstartValue.doublesolve(int maxEval, UnivariateFunction f, double min, double max, double startValue, AllowedSolution allowedSolution) Solve for a zero in the given interval, start atstartValue.doublesolve(int maxEval, UnivariateFunction f, double min, double max, AllowedSolution allowedSolution) Solve for a zero in the given interval.solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue) Solve for a zero in the given interval and return a tolerance interval surrounding the root.Methods inherited from class org.hipparchus.analysis.solvers.BaseAbstractUnivariateSolver
computeObjectiveValue, getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMax, getMin, getRelativeAccuracy, getStartValue, incrementEvaluationCount, isBracketing, isSequence, setup, solve, solve, verifyBracketing, verifyInterval, verifySequenceMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.hipparchus.analysis.solvers.BaseUnivariateSolver
getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getRelativeAccuracy, solve, solveMethods inherited from interface org.hipparchus.analysis.solvers.BracketedUnivariateSolver
solveInterval
-
Field Details
-
DEFAULT_ABSOLUTE_ACCURACY
protected static final double DEFAULT_ABSOLUTE_ACCURACYDefault absolute accuracy.- See Also:
-
-
Constructor Details
-
BaseSecantSolver
Construct a solver.- Parameters:
absoluteAccuracy- Absolute accuracy.method- Secant-based root-finding method to use.
-
BaseSecantSolver
protected BaseSecantSolver(double relativeAccuracy, double absoluteAccuracy, BaseSecantSolver.Method method) Construct a solver.- Parameters:
relativeAccuracy- Relative accuracy.absoluteAccuracy- Absolute accuracy.method- Secant-based root-finding method to use.
-
BaseSecantSolver
protected BaseSecantSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy, BaseSecantSolver.Method method) Construct a solver.- Parameters:
relativeAccuracy- Maximum relative error.absoluteAccuracy- Maximum absolute error.functionValueAccuracy- Maximum function value error.method- Secant-based root-finding method to use
-
-
Method Details
-
solve
public double solve(int maxEval, UnivariateFunction f, double min, double max, AllowedSolution allowedSolution) Solve for a zero in the given interval. A solver may require that the interval brackets a single zero root. Solvers that do require bracketing should be able to handle the case where one of the endpoints is itself a root.- Specified by:
solvein interfaceBracketedUnivariateSolver<UnivariateFunction>- Parameters:
maxEval- Maximum number of evaluations.f- Function to solve.min- Lower bound for the interval.max- Upper bound for the interval.allowedSolution- The kind of solutions that the root-finding algorithm may accept as solutions.- Returns:
- A value where the function is zero.
-
solve
public double solve(int maxEval, UnivariateFunction f, double min, double max, double startValue, AllowedSolution allowedSolution) Solve for a zero in the given interval, start atstartValue. A solver may require that the interval brackets a single zero root. Solvers that do require bracketing should be able to handle the case where one of the endpoints is itself a root.- Specified by:
solvein interfaceBracketedUnivariateSolver<UnivariateFunction>- Parameters:
maxEval- Maximum number of evaluations.f- Function to solve.min- Lower bound for the interval.max- Upper bound for the interval.startValue- Start value to use.allowedSolution- The kind of solutions that the root-finding algorithm may accept as solutions.- Returns:
- A value where the function is zero.
-
solve
Solve for a zero in the given interval, start atstartValue. A solver may require that the interval brackets a single zero root. Solvers that do require bracketing should be able to handle the case where one of the endpoints is itself a root.- Specified by:
solvein interfaceBaseUnivariateSolver<UnivariateFunction>- Overrides:
solvein classBaseAbstractUnivariateSolver<UnivariateFunction>- Parameters:
maxEval- Maximum number of evaluations.f- Function to solve.min- Lower bound for the interval.max- Upper bound for the interval.startValue- Start value to use.- Returns:
- a value where the function is zero.
-
solveInterval
public BracketedUnivariateSolver.Interval solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue) throws MathIllegalArgumentException, MathIllegalStateException Solve for a zero in the given interval and return a tolerance interval surrounding the root.It is required that the starting interval brackets a root or that the function value at either end point is 0.0.
- Specified by:
solveIntervalin interfaceBracketedUnivariateSolver<UnivariateFunction>- Parameters:
maxEval- Maximum number of evaluations.f- Function to solve.min- Lower bound for the interval.max- Upper bound for the interval. Must be greater thanmin.startValue- start value to use. Must be in the interval [min, max].- Returns:
- an interval [ta, tb] such that for some t in [ta, tb] f(t) == 0.0 or has a
step wise discontinuity that crosses zero. Both end points also satisfy the
convergence criteria so either one could be used as the root. That is the interval
satisfies the condition (| tb - ta | <=
absoluteaccuracy + max(ta, tb) *relativeaccuracy) or ( max(|f(ta)|, |f(tb)|) <=BaseUnivariateSolver.getFunctionValueAccuracy()) or there are no floating point numbers between ta and tb. The width of the interval (tb - ta) may be zero. - Throws:
MathIllegalArgumentException- if the arguments do not satisfy the requirements specified by the solver.MathIllegalStateException- if the allowed number of evaluations is exceeded.
-
doSolve
Method for implementing actual optimization algorithms in derived classes.- Specified by:
doSolvein classBaseAbstractUnivariateSolver<UnivariateFunction>- Returns:
- the root.
- Throws:
MathIllegalStateException- if the algorithm failed due to finite precision.
-
doSolveInterval
protected final BracketedUnivariateSolver.Interval doSolveInterval() throws MathIllegalStateExceptionFind a root and return the containing interval.- Returns:
- an interval containing the root such that the selected end point meets the convergence criteria.
- Throws:
MathIllegalStateException- if convergence fails.
-