Class Gradient
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.Gradient
-
- All Implemented Interfaces:
Serializable
,Derivative<Gradient>
,Derivative1<Gradient>
,DifferentialAlgebra
,CalculusFieldElement<Gradient>
,FieldElement<Gradient>
public class Gradient extends Object implements Derivative1<Gradient>, Serializable
Class representing both the value and the differentials of a function.This class is a stripped-down version of
DerivativeStructure
withderivation order
limited to one. It should have less overhead thanDerivativeStructure
in its domain.This class is an implementation of Rall's numbers. Rall's numbers are an extension to the real numbers used throughout mathematical expressions; they hold the derivative together with the value of a function.
Gradient
instances can be used directly thanks to the arithmetic operators to the mathematical functions provided as methods by this class (+, -, *, /, %, sin, cos ...).Implementing complex expressions by hand using
Derivative
-based classes (or in fact anyCalculusFieldElement
class) is a tedious and error-prone task but has the advantage of not requiring users to compute the derivatives by themselves and allowing to switch for one derivative implementation to another as they all share the same filed API.Instances of this class are guaranteed to be immutable.
-
-
Constructor Summary
Constructors Constructor Description Gradient(double value, double... gradient)
Build an instance with values and derivative.Gradient(DerivativeStructure ds)
Build an instance from aDerivativeStructure
.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description Gradient
abs()
absolute value.Gradient
add(Gradient a)
Compute this + a.Gradient
atan2(Gradient x)
Two arguments arc tangent operation.Gradient
compose(double... f)
Compute composition of the instance by a univariate function.Gradient
compose(double f0, double f1)
Compute composition of the instance by a univariate function differentiable at order 1.static Gradient
constant(int freeParameters, double value)
Build an instance corresponding to a constant value.Gradient
copySign(double sign)
Returns the instance with the sign of the argument.Gradient
copySign(Gradient sign)
Returns the instance with the sign of the argument.Gradient
divide(double a)
'÷' operator.Gradient
divide(Gradient a)
Compute this ÷ a.boolean
equals(Object other)
Test for the equality of two univariate derivatives.Gradient
getAddendum()
Get the addendum to the real value of the number.GradientField
getField()
Get theField
to which the instance belongs.int
getFreeParameters()
Get the number of free parameters.double[]
getGradient()
Get the gradient part of the function.double
getPartialDerivative(int n)
Get the partial derivative with respect to one parameter.double
getPartialDerivative(int... orders)
Get a partial derivative.double
getValue()
Get the value part of the function.int
hashCode()
Get a hashCode for the univariate derivative.Gradient
hypot(Gradient y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.Gradient
linearCombination(double[] a, Gradient[] b)
Compute a linear combination.Gradient
linearCombination(double a1, Gradient b1, double a2, Gradient b2)
Compute a linear combination.Gradient
linearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3)
Compute a linear combination.Gradient
linearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3, double a4, Gradient b4)
Compute a linear combination.Gradient
linearCombination(Gradient[] a, Gradient[] b)
Compute a linear combination.Gradient
linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2)
Compute a linear combination.Gradient
linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3)
Compute a linear combination.Gradient
linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3, Gradient a4, Gradient b4)
Compute a linear combination.Gradient
multiply(double a)
'×' operator.Gradient
multiply(int n)
Compute n × this.Gradient
multiply(Gradient a)
Compute this × a.Gradient
negate()
Returns the additive inverse ofthis
element.Gradient
newInstance(double c)
Create an instance corresponding to a constant real value.Gradient
pow(double p)
Power operation.static Gradient
pow(double a, Gradient x)
Compute ax where a is a double and x aGradient
Gradient
pow(int n)
Integer power operation.Gradient
remainder(Gradient a)
IEEE remainder operator.Gradient
scalb(int n)
Multiply the instance by a power of 2.FieldSinCos<Gradient>
sinCos()
Combined Sine and Cosine operation.FieldSinhCosh<Gradient>
sinhCosh()
Combined hyperbolic sine and cosine operation.Gradient
stackVariable()
Add an independent variable to the Taylor expansion.Gradient
subtract(Gradient a)
Compute this - a.double
taylor(double... delta)
Evaluate Taylor expansion a derivative structure.Gradient
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPDerivativeStructure
toDerivativeStructure()
Convert the instance to aDerivativeStructure
.Gradient
toRadians()
Convert degrees to radians, with error of less than 0.5 ULPstatic Gradient
variable(int freeParameters, int index, double value)
Build aGradient
representing a variable.Gradient
withValue(double v)
Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
ceil, floor, getPi, isFinite, isInfinite, isNaN, norm, rint, round, sign, ulp
-
Methods inherited from interface org.hipparchus.analysis.differentiation.Derivative
add, getExponent, getReal, pow, remainder, subtract
-
Methods inherited from interface org.hipparchus.analysis.differentiation.Derivative1
acos, acosh, asin, asinh, atan, atanh, cbrt, cos, cosh, exp, expm1, getOrder, log, log10, log1p, reciprocal, rootN, sin, sinh, sqrt, square, tan, tanh
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Constructor Detail
-
Gradient
public Gradient(double value, double... gradient)
Build an instance with values and derivative.- Parameters:
value
- value of the functiongradient
- gradient of the function
-
Gradient
public Gradient(DerivativeStructure ds) throws MathIllegalArgumentException
Build an instance from aDerivativeStructure
.- Parameters:
ds
- derivative structure- Throws:
MathIllegalArgumentException
- ifds
order is not 1
-
-
Method Detail
-
constant
public static Gradient constant(int freeParameters, double value)
Build an instance corresponding to a constant value.- Parameters:
freeParameters
- number of free parameters (i.e. dimension of the gradient)value
- constant value of the function- Returns:
- a
Gradient
with a constant value and all derivatives set to 0.0
-
variable
public static Gradient variable(int freeParameters, int index, double value)
Build aGradient
representing a variable.Instances built using this method are considered to be the free variables with respect to which differentials are computed. As such, their differential with respect to themselves is +1.
- Parameters:
freeParameters
- number of free parameters (i.e. dimension of the gradient)index
- index of the variable (from 0 togetFreeParameters()
- 1)value
- value of the variable- Returns:
- a
Gradient
with a constant value and all derivatives set to 0.0 except the one atindex
which will be set to 1.0
-
newInstance
public Gradient newInstance(double c)
Create an instance corresponding to a constant real value.- Specified by:
newInstance
in interfaceCalculusFieldElement<Gradient>
- Parameters:
c
- constant real value- Returns:
- instance corresponding to a constant real value
-
withValue
public Gradient withValue(double v)
Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.This default implementation is there so that no API gets broken by the next release, which is not a major one. Custom inheritors should probably overwrite it.
- Specified by:
withValue
in interfaceDerivative<Gradient>
- Parameters:
v
- zeroth-order derivative of new represented function- Returns:
- new object with changed value
-
getAddendum
public Gradient getAddendum()
Get the addendum to the real value of the number.The addendum is considered to be the part that when added back to the
real part
recovers the instance. This means that whene.getReal()
is finite (i.e. neither infinite nor NaN), thene.getAddendum().add(e.getReal())
ise
ande.subtract(e.getReal())
ise.getAddendum()
. Beware that for non-finite numbers, these two equalities may not hold. The first equality (with the addition), always holds even for infinity and NaNs if the real part is independent of the addendum (this is the case for all derivatives types, as well as for complex and Dfp, but it is not the case for Tuple and FieldTuple). The second equality (with the subtraction), generally doesn't hold for non-finite numbers, because the subtraction generates NaNs.- Specified by:
getAddendum
in interfaceCalculusFieldElement<Gradient>
- Returns:
- real value
-
getValue
public double getValue()
Get the value part of the function.- Specified by:
getValue
in interfaceDerivative<Gradient>
- Returns:
- value part of the value of the function
-
getGradient
public double[] getGradient()
Get the gradient part of the function.- Returns:
- gradient part of the value of the function
- See Also:
getPartialDerivative(int)
-
getFreeParameters
public int getFreeParameters()
Get the number of free parameters.- Specified by:
getFreeParameters
in interfaceDifferentialAlgebra
- Returns:
- number of free parameters
-
getPartialDerivative
public double getPartialDerivative(int... orders) throws MathIllegalArgumentException
Get a partial derivative.- Specified by:
getPartialDerivative
in interfaceDerivative<Gradient>
- Parameters:
orders
- derivation orders with respect to each variable (if all orders are 0, the value is returned)- Returns:
- partial derivative
- Throws:
MathIllegalArgumentException
- if the numbers of variables does not match the instance- See Also:
Derivative.getValue()
-
getPartialDerivative
public double getPartialDerivative(int n) throws MathIllegalArgumentException
Get the partial derivative with respect to one parameter.- Parameters:
n
- index of the parameter (counting from 0)- Returns:
- partial derivative with respect to the nth parameter
- Throws:
MathIllegalArgumentException
- if n is either negative or larger or equal togetFreeParameters()
-
toDerivativeStructure
public DerivativeStructure toDerivativeStructure()
Convert the instance to aDerivativeStructure
.- Returns:
- derivative structure with same value and derivative as the instance
-
add
public Gradient add(Gradient a)
Compute this + a.- Specified by:
add
in interfaceFieldElement<Gradient>
- Parameters:
a
- element to add- Returns:
- a new element representing this + a
-
subtract
public Gradient subtract(Gradient a)
Compute this - a.- Specified by:
subtract
in interfaceCalculusFieldElement<Gradient>
- Specified by:
subtract
in interfaceFieldElement<Gradient>
- Parameters:
a
- element to subtract- Returns:
- a new element representing this - a
-
multiply
public Gradient multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiply
in interfaceCalculusFieldElement<Gradient>
- Specified by:
multiply
in interfaceFieldElement<Gradient>
- Parameters:
n
- Number of timesthis
must be added to itself.- Returns:
- A new element representing n × this.
-
multiply
public Gradient multiply(double a)
'×' operator.- Specified by:
multiply
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public Gradient multiply(Gradient a)
Compute this × a.- Specified by:
multiply
in interfaceFieldElement<Gradient>
- Parameters:
a
- element to multiply- Returns:
- a new element representing this × a
-
divide
public Gradient divide(double a)
'÷' operator.- Specified by:
divide
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public Gradient divide(Gradient a)
Compute this ÷ a.- Specified by:
divide
in interfaceCalculusFieldElement<Gradient>
- Specified by:
divide
in interfaceFieldElement<Gradient>
- Parameters:
a
- element to divide by- Returns:
- a new element representing this ÷ a
-
remainder
public Gradient remainder(Gradient a)
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
negate
public Gradient negate()
Returns the additive inverse ofthis
element.- Specified by:
negate
in interfaceFieldElement<Gradient>
- Returns:
- the opposite of
this
.
-
abs
public Gradient abs()
absolute value.- Specified by:
abs
in interfaceCalculusFieldElement<Gradient>
- Returns:
- abs(this)
-
copySign
public Gradient copySign(Gradient sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<Gradient>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public Gradient copySign(double sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<Gradient>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
scalb
public Gradient scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalb
in interfaceCalculusFieldElement<Gradient>
- Parameters:
n
- power of 2- Returns:
- this × 2n
-
hypot
public Gradient hypot(Gradient y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypot
in interfaceCalculusFieldElement<Gradient>
- Parameters:
y
- a value- Returns:
- sqrt(this2 +y2)
-
compose
public Gradient compose(double... f)
Compute composition of the instance by a univariate function.- Specified by:
compose
in interfaceDerivative<Gradient>
- Parameters:
f
- array of value and derivatives of the function at the current point (i.e. [f(Derivative.getValue()
), f'(Derivative.getValue()
), f''(Derivative.getValue()
)...]).- Returns:
- f(this)
-
compose
public Gradient compose(double f0, double f1)
Compute composition of the instance by a univariate function differentiable at order 1.- Specified by:
compose
in interfaceDerivative1<Gradient>
- Parameters:
f0
- value of functionf1
- first-order derivative- Returns:
- f(this)
-
getField
public GradientField getField()
Get theField
to which the instance belongs.- Specified by:
getField
in interfaceFieldElement<Gradient>
- Returns:
Field
to which the instance belongs
-
pow
public static Gradient pow(double a, Gradient x)
Compute ax where a is a double and x aGradient
- Parameters:
a
- number to exponentiatex
- power to apply- Returns:
- ax
-
pow
public Gradient pow(double p)
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<Gradient>
- Parameters:
p
- power to apply- Returns:
- thisp
-
pow
public Gradient pow(int n)
Integer power operation.- Specified by:
pow
in interfaceCalculusFieldElement<Gradient>
- Parameters:
n
- power to apply- Returns:
- thisn
-
sinCos
public FieldSinCos<Gradient> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCos
in interfaceCalculusFieldElement<Gradient>
- Specified by:
sinCos
in interfaceDerivative1<Gradient>
- Returns:
- [sin(this), cos(this)]
-
atan2
public Gradient atan2(Gradient x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2
, this method computesatan2(this, x)
, i.e. the instance represents they
argument and thex
argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2
two-arguments arc tangent and putsx
as its first argument.- Specified by:
atan2
in interfaceCalculusFieldElement<Gradient>
- Parameters:
x
- second argument of the arc tangent- Returns:
- atan2(this, x)
-
sinhCosh
public FieldSinhCosh<Gradient> sinhCosh()
Combined hyperbolic sine and cosine operation.- Specified by:
sinhCosh
in interfaceCalculusFieldElement<Gradient>
- Specified by:
sinhCosh
in interfaceDerivative1<Gradient>
- Returns:
- [sinh(this), cosh(this)]
-
toDegrees
public Gradient toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegrees
in interfaceCalculusFieldElement<Gradient>
- Returns:
- instance converted into degrees
-
toRadians
public Gradient toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadians
in interfaceCalculusFieldElement<Gradient>
- Returns:
- instance converted into radians
-
taylor
public double taylor(double... delta)
Evaluate Taylor expansion a derivative structure.- Parameters:
delta
- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
linearCombination
public Gradient linearCombination(Gradient[] a, Gradient[] b)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.
-
linearCombination
public Gradient linearCombination(double[] a, Gradient[] b)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.
-
linearCombination
public Gradient linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Gradient linearCombination(double a1, Gradient b1, double a2, Gradient b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Gradient linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Gradient linearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public Gradient linearCombination(Gradient a1, Gradient b1, Gradient a2, Gradient b2, Gradient a3, Gradient b3, Gradient a4, Gradient b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public Gradient linearCombination(double a1, Gradient b1, double a2, Gradient b2, double a3, Gradient b3, double a4, Gradient b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Gradient>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
stackVariable
public Gradient stackVariable()
Add an independent variable to the Taylor expansion.- Returns:
- object with one more variable
- Since:
- 4.0
-
equals
public boolean equals(Object other)
Test for the equality of two univariate derivatives.univariate derivatives are considered equal if they have the same derivatives.
-
-