Class FieldGradient<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.analysis.differentiation.FieldGradient<T>
-
- Type Parameters:
T
- the type of the function parameters and value
- All Implemented Interfaces:
DifferentialAlgebra
,FieldDerivative<T,FieldGradient<T>>
,FieldDerivative1<T,FieldGradient<T>>
,CalculusFieldElement<FieldGradient<T>>
,FieldElement<FieldGradient<T>>
public class FieldGradient<T extends CalculusFieldElement<T>> extends Object implements FieldDerivative1<T,FieldGradient<T>>
Class representing both the value and the differentials of a function.This class is a stripped-down version of
FieldDerivativeStructure
withderivation order
limited to one. It should have less overhead thanFieldDerivativeStructure
in its domain.This class is an implementation of Rall's numbers. Rall's numbers are an extension to the real numbers used throughout mathematical expressions; they hold the derivative together with the value of a function.
FieldGradient
instances can be used directly thanks to the arithmetic operators to the mathematical functions provided as methods by this class (+, -, *, /, %, sin, cos ...).Implementing complex expressions by hand using
Derivative
-based classes (or in fact anyCalculusFieldElement
class) is a tedious and error-prone task but has the advantage of not requiring users to compute the derivatives by themselves and allowing to switch for one derivative implementation to another as they all share the same filed API.Instances of this class are guaranteed to be immutable.
-
-
Constructor Summary
Constructors Constructor Description FieldGradient(FieldDerivativeStructure<T> ds)
Build an instance from aFieldDerivativeStructure
.FieldGradient(T value, T... gradient)
Build an instance with values and derivative.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description FieldGradient<T>
abs()
absolute value.FieldGradient<T>
add(double a)
'+' operator.FieldGradient<T>
add(FieldGradient<T> a)
Compute this + a.FieldGradient<T>
atan2(FieldGradient<T> x)
Two arguments arc tangent operation.FieldGradient<T>
compose(T g0, T g1)
Compute composition of the instance by a function.static <T extends CalculusFieldElement<T>>
FieldGradient<T>constant(int freeParameters, T value)
Build an instance corresponding to a constant value.FieldGradient<T>
copySign(double sign)
Returns the instance with the sign of the argument.FieldGradient<T>
copySign(FieldGradient<T> sign)
Returns the instance with the sign of the argument.FieldGradient<T>
copySign(T sign)
Returns the instance with the sign of the argument.FieldGradient<T>
divide(double a)
'÷' operator.FieldGradient<T>
divide(FieldGradient<T> a)
Compute this ÷ a.FieldGradient<T>
divide(T a)
'÷' operator.boolean
equals(Object other)
Test for the equality of two univariate derivatives.FieldGradient<T>
getAddendum()
Get the addendum to the real value of the number.FieldGradientField<T>
getField()
Get theField
to which the instance belongs.int
getFreeParameters()
Get the number of free parameters.T[]
getGradient()
Get the gradient part of the function.T
getPartialDerivative(int n)
Get the partial derivative with respect to one parameter.T
getPartialDerivative(int... orders)
Get a partial derivative.FieldGradient<T>
getPi()
Get the Archimedes constant π.T
getValue()
Get the value part of the function.Field<T>
getValueField()
Get theField
the value and parameters of the function belongs to.int
hashCode()
Get a hashCode for the univariate derivative.FieldGradient<T>
hypot(FieldGradient<T> y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldGradient<T>
linearCombination(double[] a, FieldGradient<T>[] b)
Compute a linear combination.FieldGradient<T>
linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2)
Compute a linear combination.FieldGradient<T>
linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3)
Compute a linear combination.FieldGradient<T>
linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3, double a4, FieldGradient<T> b4)
Compute a linear combination.FieldGradient<T>
linearCombination(FieldGradient<T>[] a, FieldGradient<T>[] b)
Compute a linear combination.FieldGradient<T>
linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2)
Compute a linear combination.FieldGradient<T>
linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3)
Compute a linear combination.FieldGradient<T>
linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3, FieldGradient<T> a4, FieldGradient<T> b4)
Compute a linear combination.FieldGradient<T>
linearCombination(T[] a, FieldGradient<T>[] b)
Compute a linear combination.FieldGradient<T>
linearCombination(T a1, FieldGradient<T> b1, T a2, FieldGradient<T> b2, T a3, FieldGradient<T> b3)
Compute a linear combination.FieldGradient<T>
multiply(double a)
'×' operator.FieldGradient<T>
multiply(int n)
Compute n × this.FieldGradient<T>
multiply(FieldGradient<T> a)
Compute this × a.FieldGradient<T>
multiply(T n)
'×' operator.FieldGradient<T>
negate()
Returns the additive inverse ofthis
element.FieldGradient<T>
newInstance(double c)
Create an instance corresponding to a constant real value.FieldGradient<T>
newInstance(T c)
Create an instance corresponding to a constant Field value.FieldGradient<T>
pow(double p)
Power operation.static <T extends CalculusFieldElement<T>>
FieldGradient<T>pow(double a, FieldGradient<T> x)
Compute ax where a is a double and x aFieldGradient
FieldGradient<T>
pow(int n)
Integer power operation.FieldGradient<T>
remainder(double a)
IEEE remainder operator.FieldGradient<T>
remainder(FieldGradient<T> a)
IEEE remainder operator.FieldGradient<T>
remainder(T a)
IEEE remainder operator.FieldGradient<T>
rootN(int n)
Nth root.FieldGradient<T>
scalb(int n)
Multiply the instance by a power of 2.FieldSinCos<FieldGradient<T>>
sinCos()
Combined Sine and Cosine operation.FieldSinhCosh<FieldGradient<T>>
sinhCosh()
Combined hyperbolic sine and cosine operation.FieldGradient<T>
stackVariable()
Add an independent variable to the Taylor expansion.FieldGradient<T>
subtract(double a)
'-' operator.FieldGradient<T>
subtract(FieldGradient<T> a)
Compute this - a.T
taylor(double... delta)
Evaluate Taylor expansion of a gradient.T
taylor(T... delta)
Evaluate Taylor expansion of a gradient.FieldGradient<T>
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPFieldDerivativeStructure<T>
toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure
.FieldGradient<T>
toRadians()
Convert degrees to radians, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
FieldGradient<T>variable(int freeParameters, int index, T value)
Build aGradient
representing a variable.FieldGradient<T>
withValue(T v)
Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.hipparchus.CalculusFieldElement
isFinite, isInfinite, isNaN, norm, round
-
Methods inherited from interface org.hipparchus.analysis.differentiation.FieldDerivative
add, ceil, floor, getExponent, getReal, pow, rint, sign, subtract, ulp
-
Methods inherited from interface org.hipparchus.analysis.differentiation.FieldDerivative1
acos, acosh, asin, asinh, atan, atanh, cbrt, cos, cosh, exp, expm1, getOrder, log, log10, log1p, reciprocal, sin, sinh, sqrt, square, tan, tanh
-
Methods inherited from interface org.hipparchus.FieldElement
isZero
-
-
-
-
Constructor Detail
-
FieldGradient
@SafeVarargs public FieldGradient(T value, T... gradient)
Build an instance with values and derivative.- Parameters:
value
- value of the functiongradient
- gradient of the function
-
FieldGradient
public FieldGradient(FieldDerivativeStructure<T> ds) throws MathIllegalArgumentException
Build an instance from aFieldDerivativeStructure
.- Parameters:
ds
- derivative structure- Throws:
MathIllegalArgumentException
- ifds
order is not 1
-
-
Method Detail
-
constant
public static <T extends CalculusFieldElement<T>> FieldGradient<T> constant(int freeParameters, T value)
Build an instance corresponding to a constant value.- Type Parameters:
T
- the type of the function parameters and value- Parameters:
freeParameters
- number of free parameters (i.e. dimension of the gradient)value
- constant value of the function- Returns:
- a
FieldGradient
with a constant value and all derivatives set to 0.0
-
variable
public static <T extends CalculusFieldElement<T>> FieldGradient<T> variable(int freeParameters, int index, T value)
Build aGradient
representing a variable.Instances built using this method are considered to be the free variables with respect to which differentials are computed. As such, their differential with respect to themselves is +1.
- Type Parameters:
T
- the type of the function parameters and value- Parameters:
freeParameters
- number of free parameters (i.e. dimension of the gradient)index
- index of the variable (from 0 togetFreeParameters()
- 1)value
- value of the variable- Returns:
- a
FieldGradient
with a constant value and all derivatives set to 0.0 except the one atindex
which will be set to 1.0
-
getValueField
public Field<T> getValueField()
Get theField
the value and parameters of the function belongs to.- Returns:
Field
the value and parameters of the function belongs to
-
newInstance
public FieldGradient<T> newInstance(double c)
Create an instance corresponding to a constant real value.- Specified by:
newInstance
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
c
- constant real value- Returns:
- instance corresponding to a constant real value
-
newInstance
public FieldGradient<T> newInstance(T c)
Create an instance corresponding to a constant Field value.This default implementation is there so that no API gets broken by the next release, which is not a major one. Custom inheritors should probably overwrite it.
- Specified by:
newInstance
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>
- Parameters:
c
- constant value- Returns:
- instance corresponding to a constant Field value
-
withValue
public FieldGradient<T> withValue(T v)
Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.This default implementation is there so that no API gets broken by the next release, which is not a major one. Custom inheritors should probably overwrite it.
- Specified by:
withValue
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>
- Parameters:
v
- zeroth-order derivative of new represented function- Returns:
- new object with changed value
-
getAddendum
public FieldGradient<T> getAddendum()
Get the addendum to the real value of the number.The addendum is considered to be the part that when added back to the
real part
recovers the instance. This means that whene.getReal()
is finite (i.e. neither infinite nor NaN), thene.getAddendum().add(e.getReal())
ise
ande.subtract(e.getReal())
ise.getAddendum()
. Beware that for non-finite numbers, these two equalities may not hold. The first equality (with the addition), always holds even for infinity and NaNs if the real part is independent of the addendum (this is the case for all derivatives types, as well as for complex and Dfp, but it is not the case for Tuple and FieldTuple). The second equality (with the subtraction), generally doesn't hold for non-finite numbers, because the subtraction generates NaNs.- Specified by:
getAddendum
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- real value
-
getValue
public T getValue()
Get the value part of the function.- Specified by:
getValue
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>
- Returns:
- value part of the value of the function
-
getGradient
public T[] getGradient()
Get the gradient part of the function.- Returns:
- gradient part of the value of the function
-
getFreeParameters
public int getFreeParameters()
Get the number of free parameters.- Specified by:
getFreeParameters
in interfaceDifferentialAlgebra
- Returns:
- number of free parameters
-
getPartialDerivative
public T getPartialDerivative(int... orders) throws MathIllegalArgumentException
Get a partial derivative.- Specified by:
getPartialDerivative
in interfaceFieldDerivative<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>
- Parameters:
orders
- derivation orders with respect to each variable (if all orders are 0, the value is returned)- Returns:
- partial derivative
- Throws:
MathIllegalArgumentException
- if the numbers of variables does not match the instance- See Also:
FieldDerivative.getValue()
-
getPartialDerivative
public T getPartialDerivative(int n) throws MathIllegalArgumentException
Get the partial derivative with respect to one parameter.- Parameters:
n
- index of the parameter (counting from 0)- Returns:
- partial derivative with respect to the nth parameter
- Throws:
MathIllegalArgumentException
- if n is either negative or larger or equal togetFreeParameters()
-
toDerivativeStructure
public FieldDerivativeStructure<T> toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure
.- Returns:
- derivative structure with same value and derivative as the instance
-
add
public FieldGradient<T> add(double a)
'+' operator.- Specified by:
add
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this+a
-
add
public FieldGradient<T> add(FieldGradient<T> a)
Compute this + a.- Specified by:
add
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to add- Returns:
- a new element representing this + a
-
subtract
public FieldGradient<T> subtract(double a)
'-' operator.- Specified by:
subtract
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this-a
-
subtract
public FieldGradient<T> subtract(FieldGradient<T> a)
Compute this - a.- Specified by:
subtract
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Specified by:
subtract
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to subtract- Returns:
- a new element representing this - a
-
multiply
public FieldGradient<T> multiply(T n)
'×' operator.- Parameters:
n
- right hand side parameter of the operator- Returns:
- this×n
-
multiply
public FieldGradient<T> multiply(int n)
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiply
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Specified by:
multiply
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- Number of timesthis
must be added to itself.- Returns:
- A new element representing n × this.
-
multiply
public FieldGradient<T> multiply(double a)
'×' operator.- Specified by:
multiply
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this×a
-
multiply
public FieldGradient<T> multiply(FieldGradient<T> a)
Compute this × a.- Specified by:
multiply
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to multiply- Returns:
- a new element representing this × a
-
divide
public FieldGradient<T> divide(T a)
'÷' operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldGradient<T> divide(double a)
'÷' operator.- Specified by:
divide
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
divide
public FieldGradient<T> divide(FieldGradient<T> a)
Compute this ÷ a.- Specified by:
divide
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Specified by:
divide
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- element to divide by- Returns:
- a new element representing this ÷ a
-
remainder
public FieldGradient<T> remainder(T a)
IEEE remainder operator.- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a (the even integer is chosen for n if this/a is halfway between two integers)
-
remainder
public FieldGradient<T> remainder(double a)
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
public FieldGradient<T> remainder(FieldGradient<T> a)
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
negate
public FieldGradient<T> negate()
Returns the additive inverse ofthis
element.- Specified by:
negate
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- the opposite of
this
.
-
abs
public FieldGradient<T> abs()
absolute value.- Specified by:
abs
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- abs(this)
-
copySign
public FieldGradient<T> copySign(T sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public FieldGradient<T> copySign(FieldGradient<T> sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
public FieldGradient<T> copySign(double sign)
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
scalb
public FieldGradient<T> scalb(int n)
Multiply the instance by a power of 2.- Specified by:
scalb
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- power of 2- Returns:
- this × 2n
-
hypot
public FieldGradient<T> hypot(FieldGradient<T> y)
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypot
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
y
- a value- Returns:
- sqrt(this2 +y2)
-
compose
public FieldGradient<T> compose(T g0, T g1)
Compute composition of the instance by a function.- Specified by:
compose
in interfaceFieldDerivative1<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>
- Parameters:
g0
- value of the function at the current point (i.e. atg(getValue())
)g1
- first derivative of the function at the current point (i.e. atg'(getValue())
)- Returns:
- g(this)
-
rootN
public FieldGradient<T> rootN(int n)
Nth root.- Specified by:
rootN
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- order of the root- Returns:
- nth root of the instance
-
getField
public FieldGradientField<T> getField()
Get theField
to which the instance belongs.- Specified by:
getField
in interfaceFieldElement<T extends CalculusFieldElement<T>>
- Returns:
Field
to which the instance belongs
-
pow
public static <T extends CalculusFieldElement<T>> FieldGradient<T> pow(double a, FieldGradient<T> x)
Compute ax where a is a double and x aFieldGradient
- Type Parameters:
T
- the type of the function parameters and value- Parameters:
a
- number to exponentiatex
- power to apply- Returns:
- ax
-
pow
public FieldGradient<T> pow(double p)
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
p
- power to apply- Returns:
- thisp
-
pow
public FieldGradient<T> pow(int n)
Integer power operation.- Specified by:
pow
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
n
- power to apply- Returns:
- thisn
-
sinCos
public FieldSinCos<FieldGradient<T>> sinCos()
Combined Sine and Cosine operation.- Specified by:
sinCos
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Specified by:
sinCos
in interfaceFieldDerivative1<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>
- Returns:
- [sin(this), cos(this)]
-
atan2
public FieldGradient<T> atan2(FieldGradient<T> x)
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2
, this method computesatan2(this, x)
, i.e. the instance represents they
argument and thex
argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2
two-arguments arc tangent and putsx
as its first argument.- Specified by:
atan2
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
x
- second argument of the arc tangent- Returns:
- atan2(this, x)
-
sinhCosh
public FieldSinhCosh<FieldGradient<T>> sinhCosh()
Combined hyperbolic sine and cosine operation.- Specified by:
sinhCosh
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Specified by:
sinhCosh
in interfaceFieldDerivative1<T extends CalculusFieldElement<T>,FieldGradient<T extends CalculusFieldElement<T>>>
- Returns:
- [sinh(this), cosh(this)]
-
toDegrees
public FieldGradient<T> toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegrees
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- instance converted into degrees
-
toRadians
public FieldGradient<T> toRadians()
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadians
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- instance converted into radians
-
taylor
public T taylor(double... delta)
Evaluate Taylor expansion of a gradient.- Parameters:
delta
- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
taylor
public T taylor(T... delta)
Evaluate Taylor expansion of a gradient.- Parameters:
delta
- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T>[] a, FieldGradient<T>[] b)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.
-
linearCombination
public FieldGradient<T> linearCombination(T[] a, FieldGradient<T>[] b)
Compute a linear combination.- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match
-
linearCombination
public FieldGradient<T> linearCombination(double[] a, FieldGradient<T>[] b)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(T a1, FieldGradient<T> b1, T a2, FieldGradient<T> b2, T a3, FieldGradient<T> b3)
Compute a linear combination.- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- Throws:
MathIllegalArgumentException
- if number of free parameters or orders are inconsistent- See Also:
linearCombination(double, FieldGradient, double, FieldGradient)
,linearCombination(double, FieldGradient, double, FieldGradient, double, FieldGradient, double, FieldGradient)
-
linearCombination
public FieldGradient<T> linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3, FieldGradient<T> a4, FieldGradient<T> b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement)
,CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)
-
linearCombination
public FieldGradient<T> linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3, double a4, FieldGradient<T> b4)
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement)
,CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)
-
stackVariable
public FieldGradient<T> stackVariable()
Add an independent variable to the Taylor expansion.- Returns:
- object with one more variable
- Since:
- 4.0
-
getPi
public FieldGradient<T> getPi()
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPi
in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>
- Returns:
- Archimedes constant π
-
equals
public boolean equals(Object other)
Test for the equality of two univariate derivatives.univariate derivatives are considered equal if they have the same derivatives.
-
-