Package | Description |
---|---|
org.hipparchus.clustering |
Clustering algorithms.
|
org.hipparchus.distribution.multivariate |
Implementations of multivariate distributions.
|
org.hipparchus.filtering.kalman |
Kalman filter.
|
org.hipparchus.filtering.kalman.extended |
Kalman filter implementation for non-linear processes.
|
org.hipparchus.filtering.kalman.linear |
Kalman filter implementation for linear processes.
|
org.hipparchus.filtering.kalman.unscented |
Unscented Kalman filter implementation.
|
org.hipparchus.linear |
Linear algebra support.
|
org.hipparchus.ode.nonstiff |
This package provides classes to solve non-stiff Ordinary Differential Equations problems.
|
org.hipparchus.optim.nonlinear.scalar |
Algorithms for optimizing a scalar function.
|
org.hipparchus.optim.nonlinear.scalar.noderiv |
This package provides optimization algorithms that do not require derivatives.
|
org.hipparchus.optim.nonlinear.vector.leastsquares |
This package provides algorithms that minimize the residuals
between observations and model values.
|
org.hipparchus.random |
Random number and random data generators.
|
org.hipparchus.stat.correlation |
Correlations/Covariance computations.
|
org.hipparchus.stat.descriptive |
Generic univariate and multivariate summary statistic objects.
|
org.hipparchus.stat.descriptive.vector |
Multivariate statistics.
|
org.hipparchus.stat.regression |
Statistical routines involving multivariate data.
|
org.hipparchus.util |
Convenience routines and common data structures used throughout the Hipparchus library.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
FuzzyKMeansClusterer.getMembershipMatrix()
Returns the
nxk membership matrix, where n is the number
of data points and k the number of clusters. |
Modifier and Type | Method and Description |
---|---|
RealMatrix |
MultivariateNormalDistribution.getCovariances()
Gets the covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
AbstractKalmanFilter.computeInnovationCovarianceMatrix(RealMatrix r,
RealMatrix h)
Compute innovation covariance matrix.
|
RealMatrix |
Measurement.getCovariance()
Get the measurement covariance.
|
RealMatrix |
ProcessEstimate.getCovariance()
Get the state covariance.
|
RealMatrix |
ProcessEstimate.getInnovationCovariance()
Get the innovation covariance matrix.
|
RealMatrix |
ProcessEstimate.getKalmanGain()
Get the Kalman gain matrix.
|
RealMatrix |
ProcessEstimate.getMeasurementJacobian()
Get the Jacobian of the measurement with respect to the state (H matrix).
|
RealMatrix |
ProcessEstimate.getStateTransitionMatrix()
Get state transition matrix between previous state and estimated (but not yet corrected) state.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
AbstractKalmanFilter.computeInnovationCovarianceMatrix(RealMatrix r,
RealMatrix h)
Compute innovation covariance matrix.
|
protected void |
AbstractKalmanFilter.correct(T measurement,
RealMatrix stm,
RealVector innovation,
RealMatrix h,
RealMatrix s)
Perform correction step.
|
protected void |
AbstractKalmanFilter.predict(double time,
RealVector predictedState,
RealMatrix stm,
RealMatrix noise)
Perform prediction step.
|
Constructor and Description |
---|
ProcessEstimate(double time,
RealVector state,
RealMatrix covariance)
Simple constructor.
|
ProcessEstimate(double time,
RealVector state,
RealMatrix covariance,
RealMatrix stateTransitionMatrix,
RealMatrix measurementJacobian,
RealMatrix innovationCovariance,
RealMatrix kalmanGain)
Simple constructor.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
NonLinearEvolution.getMeasurementJacobian()
Get measurement Jacobian.
|
RealMatrix |
NonLinearEvolution.getProcessNoiseMatrix()
Get process noise.
|
RealMatrix |
NonLinearEvolution.getStateTransitionMatrix()
Get state transition matrix between previous and current state.
|
Modifier and Type | Method and Description |
---|---|
RealVector |
NonLinearProcess.getInnovation(T measurement,
NonLinearEvolution evolution,
RealMatrix innovationCovarianceMatrix)
Get the innovation brought by a measurement.
|
Constructor and Description |
---|
NonLinearEvolution(double currentTime,
RealVector currentState,
RealMatrix stateTransitionMatrix,
RealMatrix processNoiseMatrix,
RealMatrix measurementJacobian)
Simple constructor.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
LinearEvolution.getControlMatrix()
Get the control matrix Bk-1.
|
RealMatrix |
LinearEvolution.getMeasurementJacobian()
Get measurement Jacobian.
|
RealMatrix |
LinearEvolution.getProcessNoiseMatrix()
Get the process noise matrix Qk-1.
|
RealMatrix |
LinearEvolution.getStateTransitionMatrix()
Get the state transition matrix Ak-1.
|
Constructor and Description |
---|
LinearEvolution(RealMatrix stateTransitionMatrix,
RealMatrix controlMatrix,
RealVector command,
RealMatrix processNoiseMatrix,
RealMatrix measurementJacobian)
Simple constructor.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
UnscentedEvolution.getProcessNoiseMatrix()
Get process noise.
|
Modifier and Type | Method and Description |
---|---|
RealVector |
UnscentedProcess.getInnovation(T measurement,
RealVector predictedMeasurement,
RealVector predictedState,
RealMatrix innovationCovarianceMatrix)
Get the innovation brought by a measurement.
|
Constructor and Description |
---|
UnscentedEvolution(double currentTime,
RealVector[] currentStates,
RealVector[] currentMeasurements,
RealMatrix processNoiseMatrix)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SparseRealMatrix
Marker interface for
RealMatrix implementations that require sparse backing storage |
Modifier and Type | Class and Description |
---|---|
class |
AbstractRealMatrix
Basic implementation of RealMatrix methods regardless of the underlying storage.
|
class |
Array2DRowRealMatrix
Implementation of
RealMatrix using a double[][] array to
store entries. |
class |
BlockRealMatrix
Cache-friendly implementation of RealMatrix using a flat arrays to store
square blocks of the matrix.
|
class |
DiagonalMatrix
Implementation of a diagonal matrix.
|
class |
OpenMapRealMatrix
Sparse matrix implementation based on an open addressed map.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
RealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
RealMatrix |
AbstractRealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
static RealMatrix |
MatrixUtils.blockInverse(RealMatrix m,
int splitIndex)
Computes the inverse of the given matrix by splitting it into
4 sub-matrices.
|
RealMatrix |
RealMatrix.copy()
Returns a (deep) copy of this.
|
RealMatrix |
Array2DRowRealMatrix.copy()
Returns a (deep) copy of this.
|
abstract RealMatrix |
AbstractRealMatrix.copy()
Returns a (deep) copy of this.
|
RealMatrix |
DiagonalMatrix.copy()
Returns a (deep) copy of this.
|
static RealMatrix |
MatrixUtils.createColumnRealMatrix(double[] columnData)
Creates a column
RealMatrix using the data from the input
array. |
RealMatrix |
RealMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
RealMatrix |
Array2DRowRealMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
abstract RealMatrix |
AbstractRealMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
RealMatrix |
DiagonalMatrix.createMatrix(int rowDimension,
int columnDimension)
Create a new RealMatrix of the same type as the instance with the
supplied
row and column dimensions.
|
static RealMatrix |
MatrixUtils.createRealDiagonalMatrix(double[] diagonal)
Returns a diagonal matrix with specified elements.
|
static RealMatrix |
MatrixUtils.createRealIdentityMatrix(int dimension)
Returns
dimension x dimension identity matrix. |
static RealMatrix |
MatrixUtils.createRealMatrix(double[][] data)
Returns a
RealMatrix whose entries are the the values in the
the input array. |
static RealMatrix |
MatrixUtils.createRealMatrix(int rows,
int columns)
Returns a
RealMatrix with specified dimensions. |
static RealMatrix |
MatrixUtils.createRowRealMatrix(double[] rowData)
Create a row
RealMatrix using the data from the input
array. |
RealMatrix |
RealMatrix.getColumnMatrix(int column)
Get the entries at the given column index as a column matrix.
|
RealMatrix |
AbstractRealMatrix.getColumnMatrix(int column)
Get the entries at the given column index as a column matrix.
|
RealMatrix |
SingularValueDecomposition.getCovariance(double minSingularValue)
Returns the n × n covariance matrix.
|
RealMatrix |
EigenDecomposition.getD()
Gets the block diagonal matrix D of the decomposition.
|
RealMatrix |
QRDecomposition.getH()
Returns the Householder reflector vectors.
|
RealMatrix |
DecompositionSolver.getInverse()
Get the pseudo-inverse
of the decomposed matrix.
|
RealMatrix |
RiccatiEquationSolverImpl.getK()
{inheritDoc}
|
RealMatrix |
RiccatiEquationSolver.getK()
Get the linear controller k.
|
RealMatrix |
SemiDefinitePositiveCholeskyDecomposition.getL()
Returns the matrix L of the decomposition.
|
RealMatrix |
CholeskyDecomposition.getL()
Returns the matrix L of the decomposition.
|
RealMatrix |
LUDecomposition.getL()
Returns the matrix L of the decomposition.
|
RealMatrix |
SemiDefinitePositiveCholeskyDecomposition.getLT()
Returns the transpose of the matrix L of the decomposition.
|
RealMatrix |
CholeskyDecomposition.getLT()
Returns the transpose of the matrix L of the decomposition.
|
RealMatrix |
RiccatiEquationSolverImpl.getP()
{inheritDoc}
|
RealMatrix |
RiccatiEquationSolver.getP()
Get the solution.
|
RealMatrix |
RRQRDecomposition.getP()
Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR.
|
RealMatrix |
LUDecomposition.getP()
Returns the P rows permutation matrix.
|
RealMatrix |
QRDecomposition.getQ()
Returns the matrix Q of the decomposition.
|
RealMatrix |
QRDecomposition.getQT()
Returns the transpose of the matrix Q of the decomposition.
|
RealMatrix |
QRDecomposition.getR()
Returns the matrix R of the decomposition.
|
RealMatrix |
RectangularCholeskyDecomposition.getRootMatrix()
Get the root of the covariance matrix.
|
RealMatrix |
RealMatrix.getRowMatrix(int row)
Get the entries at the given row index as a row matrix.
|
RealMatrix |
AbstractRealMatrix.getRowMatrix(int row)
Get the entries at the given row index as a row matrix.
|
RealMatrix |
SingularValueDecomposition.getS()
Returns the diagonal matrix Σ of the decomposition.
|
RealMatrix |
EigenDecomposition.getSquareRoot()
Computes the square-root of the matrix.
|
RealMatrix |
RealMatrix.getSubMatrix(int[] selectedRows,
int[] selectedColumns)
Gets a submatrix.
|
RealMatrix |
AbstractRealMatrix.getSubMatrix(int[] selectedRows,
int[] selectedColumns)
Gets a submatrix.
|
RealMatrix |
RealMatrix.getSubMatrix(int startRow,
int endRow,
int startColumn,
int endColumn)
Gets a submatrix.
|
RealMatrix |
Array2DRowRealMatrix.getSubMatrix(int startRow,
int endRow,
int startColumn,
int endColumn)
Gets a submatrix.
|
RealMatrix |
AbstractRealMatrix.getSubMatrix(int startRow,
int endRow,
int startColumn,
int endColumn)
Gets a submatrix.
|
RealMatrix |
SingularValueDecomposition.getU()
Returns the matrix U of the decomposition.
|
RealMatrix |
LUDecomposition.getU()
Returns the matrix U of the decomposition.
|
RealMatrix |
SingularValueDecomposition.getUT()
Returns the transpose of the matrix U of the decomposition.
|
RealMatrix |
EigenDecomposition.getV()
Gets the matrix V of the decomposition.
|
RealMatrix |
SingularValueDecomposition.getV()
Returns the matrix V of the decomposition.
|
RealMatrix |
EigenDecomposition.getVT()
Gets the transpose of the matrix V of the decomposition.
|
RealMatrix |
SingularValueDecomposition.getVT()
Returns the transpose of the matrix V of the decomposition.
|
RealMatrix |
OrderedEigenDecomposition.getVT()
Gets the transpose of the matrix V of the decomposition.
|
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix)
Computes the inverse of the given matrix.
|
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix,
double threshold)
Computes the inverse of the given matrix.
|
RealMatrix |
Array2DRowRealMatrix.kroneckerProduct(RealMatrix b)
Kronecker product of the current matrix and the parameter matrix.
|
default RealMatrix |
RealMatrix.map(UnivariateFunction function)
Acts as if implemented as:
|
default RealMatrix |
RealMatrix.mapToSelf(UnivariateFunction function)
Replace each entry by the result of applying the function to it.
|
static RealMatrix |
MatrixUtils.matrixExponential(RealMatrix rm)
Computes the
matrix exponential of the given matrix.
|
RealMatrix |
RealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
DiagonalMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
OpenMapRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
Array2DRowRealMatrix.multiplyTransposed(Array2DRowRealMatrix m)
Returns the result of postmultiplying
this by m^T . |
default RealMatrix |
RealMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
Array2DRowRealMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
DiagonalMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
OpenMapRealMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
ArrayRealVector.outerProduct(RealVector v)
Compute the outer product.
|
RealMatrix |
RealVector.outerProduct(RealVector v)
Compute the outer product.
|
RealMatrix |
RealMatrixFormat.parse(String source)
Parse a string to produce a
RealMatrix object. |
RealMatrix |
RealMatrixFormat.parse(String source,
ParsePosition pos)
Parse a string to produce a
RealMatrix object. |
RealMatrix |
RealMatrix.power(int p)
Returns the result of multiplying
this with itself p
times. |
RealMatrix |
AbstractRealMatrix.power(int p)
Returns the result of multiplying
this with itself p
times. |
RealMatrix |
RealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
RealMatrix |
RealMatrix.scalarAdd(double d)
Returns the result of adding
d to each entry of this . |
RealMatrix |
AbstractRealMatrix.scalarAdd(double d)
Returns the result of adding
d to each entry of this . |
RealMatrix |
RealMatrix.scalarMultiply(double d)
Returns the result of multiplying each entry of
this by
d . |
RealMatrix |
AbstractRealMatrix.scalarMultiply(double d)
Returns the result of multiplying each entry of
this by
d . |
RealMatrix |
BlockRealMatrix.scalarMultiply(double d)
Returns the result of multiplying each entry of
this by
d . |
RealMatrix |
DecompositionSolver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
RealMatrix |
Array2DRowRealMatrix.stack()
Transforms a matrix in a vector (Vectorization).
|
RealMatrix |
RealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
RealMatrix |
AbstractRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
RealMatrix |
RealMatrix.transpose()
Returns the transpose of this matrix.
|
RealMatrix |
AbstractRealMatrix.transpose()
Returns the transpose of this matrix.
|
RealMatrix |
Array2DRowRealMatrix.transposeMultiply(Array2DRowRealMatrix m)
Returns the result of postmultiplying
this^T by m . |
default RealMatrix |
RealMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
RealMatrix |
Array2DRowRealMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
RealMatrix |
DiagonalMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
RealMatrix |
OpenMapRealMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
RealMatrix |
Array2DRowRealMatrix.unstackSquare()
Transforms a one-column stacked matrix into a squared matrix (devectorization).
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
RealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
RealMatrix |
AbstractRealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
BlockRealMatrix |
BlockRealMatrix.add(RealMatrix m)
Returns the sum of
this and m . |
static RealMatrix |
MatrixUtils.blockInverse(RealMatrix m,
int splitIndex)
Computes the inverse of the given matrix by splitting it into
4 sub-matrices.
|
protected void |
ComplexEigenDecomposition.checkDefinition(RealMatrix matrix)
Check definition of the decomposition in runtime.
|
static void |
MatrixUtils.checkSymmetric(RealMatrix matrix,
double eps)
Checks whether a matrix is symmetric.
|
DecompositionSolver |
CholeskyDecomposer.decompose(RealMatrix a)
Get a solver for finding the A × X = B solution in least square sense.
|
DecompositionSolver |
MatrixDecomposer.decompose(RealMatrix a)
Get a solver for finding the A × X = B solution in least square sense.
|
DecompositionSolver |
SingularValueDecomposer.decompose(RealMatrix a)
Get a solver for finding the A × X = B solution in least square sense.
|
DecompositionSolver |
QRDecomposer.decompose(RealMatrix a)
Get a solver for finding the A × X = B solution in least square sense.
|
DecompositionSolver |
LUDecomposer.decompose(RealMatrix a)
Get a solver for finding the A × X = B solution in least square sense.
|
protected void |
ComplexEigenDecomposition.findEigenValues(RealMatrix matrix)
Compute eigen values using the Schur transform.
|
String |
RealMatrixFormat.format(RealMatrix m)
This method calls
RealMatrixFormat.format(RealMatrix,StringBuffer,FieldPosition) . |
StringBuffer |
RealMatrixFormat.format(RealMatrix matrix,
StringBuffer toAppendTo,
FieldPosition pos)
Formats a
RealMatrix object to produce a string. |
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix)
Computes the inverse of the given matrix.
|
static RealMatrix |
MatrixUtils.inverse(RealMatrix matrix,
double threshold)
Computes the inverse of the given matrix.
|
static boolean |
MatrixUtils.isSymmetric(RealMatrix matrix,
double eps)
Checks whether a matrix is symmetric.
|
RealMatrix |
Array2DRowRealMatrix.kroneckerProduct(RealMatrix b)
Kronecker product of the current matrix and the parameter matrix.
|
static RealMatrix |
MatrixUtils.matrixExponential(RealMatrix rm)
Computes the
matrix exponential of the given matrix.
|
RealMatrix |
RealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
DiagonalMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
BlockRealMatrix |
BlockRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
RealMatrix |
OpenMapRealMatrix.multiply(RealMatrix m)
Returns the result of postmultiplying
this by m . |
default RealMatrix |
RealMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
Array2DRowRealMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
DiagonalMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
BlockRealMatrix |
BlockRealMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
OpenMapRealMatrix.multiplyTransposed(RealMatrix m)
Returns the result of postmultiplying
this by m^T . |
RealMatrix |
RealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
RealMatrix |
AbstractRealMatrix.preMultiply(RealMatrix m)
Returns the result of premultiplying
this by m . |
static void |
MatrixUtils.serializeRealMatrix(RealMatrix matrix,
ObjectOutputStream oos)
Serialize a
RealMatrix . |
void |
RealMatrix.setColumnMatrix(int column,
RealMatrix matrix)
Sets the specified
column of this matrix to the entries
of the specified column matrix . |
void |
AbstractRealMatrix.setColumnMatrix(int column,
RealMatrix matrix)
Sets the specified
column of this matrix to the entries
of the specified column matrix . |
void |
BlockRealMatrix.setColumnMatrix(int column,
RealMatrix matrix)
Sets the specified
column of this matrix to the entries
of the specified column matrix . |
void |
RealMatrix.setRowMatrix(int row,
RealMatrix matrix)
Sets the specified
row of this matrix to the entries of
the specified row matrix . |
void |
AbstractRealMatrix.setRowMatrix(int row,
RealMatrix matrix)
Sets the specified
row of this matrix to the entries of
the specified row matrix . |
void |
BlockRealMatrix.setRowMatrix(int row,
RealMatrix matrix)
Sets the specified
row of this matrix to the entries of
the specified row matrix . |
RealMatrix |
DecompositionSolver.solve(RealMatrix b)
Solve the linear equation A × X = B for matrices A.
|
static void |
MatrixUtils.solveLowerTriangularSystem(RealMatrix rm,
RealVector b)
Solve a system of composed of a Lower Triangular Matrix
RealMatrix . |
static void |
MatrixUtils.solveUpperTriangularSystem(RealMatrix rm,
RealVector b)
Solver a system composed of an Upper Triangular Matrix
RealMatrix . |
RealMatrix |
RealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
RealMatrix |
AbstractRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
BlockRealMatrix |
BlockRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
OpenMapRealMatrix |
OpenMapRealMatrix.subtract(RealMatrix m)
Returns
this minus m . |
default RealMatrix |
RealMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
RealMatrix |
Array2DRowRealMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
RealMatrix |
DiagonalMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
BlockRealMatrix |
BlockRealMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
RealMatrix |
OpenMapRealMatrix.transposeMultiply(RealMatrix m)
Returns the result of postmultiplying
this^T by m . |
Constructor and Description |
---|
CholeskyDecomposition(RealMatrix matrix)
Calculates the Cholesky decomposition of the given matrix.
|
CholeskyDecomposition(RealMatrix matrix,
double relativeSymmetryThreshold,
double absolutePositivityThreshold)
Calculates the Cholesky decomposition of the given matrix.
|
ComplexEigenDecomposition(RealMatrix matrix)
Constructor for decomposition.
|
ComplexEigenDecomposition(RealMatrix matrix,
double eigenVectorsEquality,
double epsilon,
double epsilonAVVDCheck)
Constructor for decomposition.
|
EigenDecomposition(RealMatrix matrix)
Calculates the eigen decomposition of the given real matrix.
|
EigenDecomposition(RealMatrix matrix,
double epsilon)
Calculates the eigen decomposition of the given real matrix.
|
LUDecomposition(RealMatrix matrix)
Calculates the LU-decomposition of the given matrix.
|
LUDecomposition(RealMatrix matrix,
double singularityThreshold)
Calculates the LU-decomposition of the given matrix.
|
OrderedComplexEigenDecomposition(RealMatrix matrix)
Constructor for the decomposition.
|
OrderedComplexEigenDecomposition(RealMatrix matrix,
double eigenVectorsEquality,
double epsilon,
double epsilonAVVDCheck)
Constructor for decomposition.
|
OrderedEigenDecomposition(RealMatrix matrix)
Constructor using the EigenDecomposition as starting point for ordering.
|
QRDecomposition(RealMatrix matrix)
Calculates the QR-decomposition of the given matrix.
|
QRDecomposition(RealMatrix matrix,
double threshold)
Calculates the QR-decomposition of the given matrix.
|
RectangularCholeskyDecomposition(RealMatrix matrix)
Decompose a symmetric positive semidefinite matrix.
|
RectangularCholeskyDecomposition(RealMatrix matrix,
double small)
Decompose a symmetric positive semidefinite matrix.
|
RiccatiEquationSolverImpl(RealMatrix A,
RealMatrix B,
RealMatrix Q,
RealMatrix R)
Constructor of the solver.
|
RRQRDecomposition(RealMatrix matrix)
Calculates the QR-decomposition of the given matrix.
|
RRQRDecomposition(RealMatrix matrix,
double threshold)
Calculates the QR-decomposition of the given matrix.
|
SemiDefinitePositiveCholeskyDecomposition(RealMatrix matrix)
Calculates the Cholesky decomposition of the given matrix.
|
SemiDefinitePositiveCholeskyDecomposition(RealMatrix matrix,
double positivityThreshold)
Calculates the Cholesky decomposition of the given matrix.
|
SingularValueDecomposition(RealMatrix matrix)
Calculates the compact Singular Value Decomposition of the given matrix.
|
Modifier and Type | Method and Description |
---|---|
protected double |
AdamsMoultonIntegrator.errorEstimation(double[] previousState,
double predictedTime,
double[] predictedState,
double[] predictedScaled,
RealMatrix predictedNordsieck)
Estimate error.
|
protected abstract double |
AdamsIntegrator.errorEstimation(double[] previousState,
double predictedTime,
double[] predictedState,
double[] predictedScaled,
RealMatrix predictedNordsieck)
Estimate error.
|
protected double |
AdamsBashforthIntegrator.errorEstimation(double[] previousState,
double predictedTime,
double[] predictedState,
double[] predictedScaled,
RealMatrix predictedNordsieck)
Estimate error.
|
Constructor and Description |
---|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations,
RealMatrix scale)
Builds a simple converter for correlated residuals with the
specified weights.
|
Modifier and Type | Method and Description |
---|---|
List<RealMatrix> |
CMAESOptimizer.getStatisticsDHistory() |
List<RealMatrix> |
CMAESOptimizer.getStatisticsMeanHistory() |
Modifier and Type | Method and Description |
---|---|
RealMatrix |
ValueAndJacobianFunction.computeJacobian(double[] params)
Compute the Jacobian.
|
RealMatrix |
LeastSquaresProblem.Evaluation.getCovariances(double threshold)
Get the covariance matrix of the optimized parameters.
|
RealMatrix |
AbstractEvaluation.getCovariances(double threshold)
Get the covariance matrix of the optimized parameters.
|
RealMatrix |
LeastSquaresProblem.Evaluation.getJacobian()
Get the weighted Jacobian matrix.
|
Modifier and Type | Method and Description |
---|---|
Pair<RealVector,RealMatrix> |
MultivariateJacobianFunction.value(RealVector point)
Compute the function value and its Jacobian.
|
Modifier and Type | Method and Description |
---|---|
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateJacobianFunction model,
RealVector observed,
RealVector start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateJacobianFunction model,
RealVector observed,
RealVector start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations,
boolean lazyEvaluation,
ParameterValidator paramValidator)
Create a
LeastSquaresProblem
from the given elements. |
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateVectorFunction model,
MultivariateMatrixFunction jacobian,
double[] observed,
double[] start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
LeastSquaresBuilder |
LeastSquaresBuilder.weight(RealMatrix newWeight)
Configure the weight matrix.
|
static LeastSquaresProblem |
LeastSquaresFactory.weightMatrix(LeastSquaresProblem problem,
RealMatrix weights)
Apply a dense weight matrix to the
LeastSquaresProblem . |
SequentialGaussNewtonOptimizer |
SequentialGaussNewtonOptimizer.withAPrioriData(RealVector aPrioriState,
RealMatrix aPrioriCovariance)
Configure from a priori state and covariance.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
CorrelatedRandomVectorGenerator.getRootMatrix()
Get the root of the covariance matrix.
|
Constructor and Description |
---|
CorrelatedRandomVectorGenerator(double[] mean,
RealMatrix covariance,
double small,
NormalizedRandomGenerator generator)
Builds a correlated random vector generator from its mean
vector and covariance matrix.
|
CorrelatedRandomVectorGenerator(RealMatrix covariance,
double small,
NormalizedRandomGenerator generator)
Builds a null mean random correlated vector generator from its
covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
SpearmansCorrelation.computeCorrelationMatrix(double[][] matrix)
Computes the Spearman's rank correlation matrix for the columns of the
input rectangular array.
|
RealMatrix |
KendallsCorrelation.computeCorrelationMatrix(double[][] matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of
the input rectangular array.
|
RealMatrix |
PearsonsCorrelation.computeCorrelationMatrix(double[][] data)
Computes the correlation matrix for the columns of the
input rectangular array.
|
RealMatrix |
SpearmansCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Spearman's rank correlation matrix for the columns of the
input matrix.
|
RealMatrix |
KendallsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of
the input matrix.
|
RealMatrix |
PearsonsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the correlation matrix for the columns of the
input matrix, using
PearsonsCorrelation.correlation(double[], double[]) . |
protected RealMatrix |
Covariance.computeCovarianceMatrix(double[][] data)
Create a covariance matrix from a rectangular array whose columns represent
covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(double[][] data,
boolean biasCorrected)
Compute a covariance matrix from a rectangular array whose columns represent covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent
covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix,
boolean biasCorrected)
Compute a covariance matrix from a matrix whose columns represent covariates.
|
RealMatrix |
PearsonsCorrelation.covarianceToCorrelation(RealMatrix covarianceMatrix)
Derives a correlation matrix from a covariance matrix.
|
RealMatrix |
SpearmansCorrelation.getCorrelationMatrix()
Calculate the Spearman Rank Correlation Matrix.
|
RealMatrix |
KendallsCorrelation.getCorrelationMatrix()
Returns the correlation matrix.
|
RealMatrix |
PearsonsCorrelation.getCorrelationMatrix()
Returns the correlation matrix.
|
RealMatrix |
PearsonsCorrelation.getCorrelationPValues()
Returns a matrix of p-values associated with the (two-sided) null
hypothesis that the corresponding correlation coefficient is zero.
|
RealMatrix |
PearsonsCorrelation.getCorrelationStandardErrors()
Returns a matrix of standard errors associated with the estimates
in the correlation matrix.
getCorrelationStandardErrors().getEntry(i,j) is the standard
error associated with getCorrelationMatrix.getEntry(i,j) |
RealMatrix |
StorelessCovariance.getCovarianceMatrix()
Returns the covariance matrix
|
RealMatrix |
Covariance.getCovarianceMatrix()
Returns the covariance matrix
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
SpearmansCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Spearman's rank correlation matrix for the columns of the
input matrix.
|
RealMatrix |
KendallsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of
the input matrix.
|
RealMatrix |
PearsonsCorrelation.computeCorrelationMatrix(RealMatrix matrix)
Computes the correlation matrix for the columns of the
input matrix, using
PearsonsCorrelation.correlation(double[], double[]) . |
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent
covariates.
|
protected RealMatrix |
Covariance.computeCovarianceMatrix(RealMatrix matrix,
boolean biasCorrected)
Compute a covariance matrix from a matrix whose columns represent covariates.
|
RealMatrix |
PearsonsCorrelation.covarianceToCorrelation(RealMatrix covarianceMatrix)
Derives a correlation matrix from a covariance matrix.
|
Constructor and Description |
---|
Covariance(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Covariance(RealMatrix matrix,
boolean biasCorrected)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
KendallsCorrelation(RealMatrix matrix)
Create a KendallsCorrelation from a RealMatrix whose columns
represent variables to be correlated.
|
PearsonsCorrelation(RealMatrix matrix)
Create a PearsonsCorrelation from a RealMatrix whose columns
represent variables to be correlated.
|
PearsonsCorrelation(RealMatrix covarianceMatrix,
int numberOfObservations)
Create a PearsonsCorrelation from a covariance matrix.
|
SpearmansCorrelation(RealMatrix dataMatrix)
Create a SpearmansCorrelation from the given data matrix.
|
SpearmansCorrelation(RealMatrix dataMatrix,
RankingAlgorithm rankingAlgorithm)
Create a SpearmansCorrelation with the given input data matrix
and ranking algorithm.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
StatisticalMultivariateSummary.getCovariance()
Returns the covariance of the available values.
|
RealMatrix |
MultivariateSummaryStatistics.getCovariance()
Returns the covariance of the available values.
|
Modifier and Type | Method and Description |
---|---|
RealMatrix |
VectorialCovariance.getResult()
Get the covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
GLSMultipleLinearRegression.calculateBetaVariance()
Calculates the variance on the beta.
|
protected RealMatrix |
OLSMultipleLinearRegression.calculateBetaVariance()
Calculates the variance-covariance matrix of the regression parameters.
|
protected abstract RealMatrix |
AbstractMultipleLinearRegression.calculateBetaVariance()
Calculates the beta variance of multiple linear regression in matrix
notation.
|
RealMatrix |
OLSMultipleLinearRegression.calculateHat()
Compute the "hat" matrix.
|
protected RealMatrix |
GLSMultipleLinearRegression.getOmegaInverse()
Get the inverse of the covariance.
|
protected RealMatrix |
AbstractMultipleLinearRegression.getX() |
Modifier and Type | Method and Description |
---|---|
RealVector[] |
UnscentedTransformProvider.unscentedTransform(RealVector state,
RealMatrix covariance)
Perform the unscented transform from a state and its covariance.
|
RealVector[] |
AbstractUnscentedTransform.unscentedTransform(RealVector state,
RealMatrix covariance)
Perform the unscented transform from a state and its covariance.
|
Copyright © 2016-2022 CS GROUP. All rights reserved.