Package | Description |
---|---|
org.hipparchus.complex |
Complex number type and implementations of complex transcendental
functions.
|
org.hipparchus.special.elliptic.carlson |
Implementations of Carlson elliptic integrals.
|
org.hipparchus.special.elliptic.jacobi |
Implementations of Jacobi elliptic functions.
|
org.hipparchus.special.elliptic.legendre |
Implementations of Legendre elliptic integrals.
|
Modifier and Type | Method and Description |
---|---|
FieldComplex<T> |
FieldComplex.abs()
Return the absolute value of this complex number.
|
FieldComplex<T> |
FieldComplex.acos()
Compute the
inverse cosine of this complex number.
|
FieldComplex<T> |
FieldComplex.acosh()
Inverse hyperbolic cosine operation.
|
FieldComplex<T> |
FieldComplex.add(double addend)
Returns a
Complex whose value is (this + addend) ,
with addend interpreted as a real number. |
FieldComplex<T> |
FieldComplex.add(FieldComplex<T> addend)
Returns a
Complex whose value is
(this + addend) . |
FieldComplex<T> |
FieldComplex.add(T addend)
Returns a
Complex whose value is (this + addend) ,
with addend interpreted as a real number. |
FieldComplex<T> |
FieldComplex.asin()
Compute the
inverse sine of this complex number.
|
FieldComplex<T> |
FieldComplex.asinh()
Inverse hyperbolic sine operation.
|
FieldComplex<T> |
FieldComplex.atan()
Compute the
inverse tangent of this complex number.
|
FieldComplex<T> |
FieldComplex.atan2(FieldComplex<T> x)
Two arguments arc tangent operation.
|
FieldComplex<T> |
FieldComplex.atanh()
Inverse hyperbolic tangent operation.
|
FieldComplex<T> |
FieldComplex.cbrt()
Cubic root.
|
FieldComplex<T> |
FieldComplex.ceil()
Get the smallest whole number larger than instance.
|
FieldComplex<T> |
FieldComplex.conjugate()
Returns the conjugate of this complex number.
|
FieldComplex<T> |
FieldComplex.copySign(double r)
Returns the instance with the sign of the argument.
|
FieldComplex<T> |
FieldComplex.copySign(FieldComplex<T> z)
Returns the instance with the sign of the argument.
|
FieldComplex<T> |
FieldComplex.cos()
Compute the
cosine of this complex number.
|
FieldComplex<T> |
FieldComplex.cosh()
Compute the
hyperbolic cosine of this complex number.
|
protected FieldComplex<T> |
FieldComplex.createComplex(T realPart,
T imaginaryPart)
Create a complex number given the real and imaginary parts.
|
FieldComplex<T> |
FieldComplex.divide(double divisor)
Returns a
Complex whose value is (this / divisor) ,
with divisor interpreted as a real number. |
FieldComplex<T> |
FieldComplex.divide(FieldComplex<T> divisor)
Returns a
Complex whose value is
(this / divisor) . |
FieldComplex<T> |
FieldComplex.divide(T divisor)
Returns a
Complex whose value is (this / divisor) ,
with divisor interpreted as a real number. |
FieldComplex<T> |
FieldComplex.exp()
Compute the
exponential function of this complex number.
|
FieldComplex<T> |
FieldComplex.expm1()
Exponential minus 1.
|
FieldComplex<T> |
FieldComplex.floor()
Get the largest whole number smaller than instance.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getI(Field<T> field)
Get the square root of -1.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getInf(Field<T> field)
Get a complex number representing "+INF + INFi".
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getMinusI(Field<T> field)
Get the square root of -1.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getMinusOne(Field<T> field)
Get a complex number representing "-1.0 + 0.0i".
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getNaN(Field<T> field)
Get a complex number representing "NaN + NaNi".
|
FieldComplex<T> |
FieldComplexField.getOne()
Get the multiplicative identity of the field.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getOne(Field<T> field)
Get a complex number representing "1.0 + 0.0i".
|
FieldComplex<T> |
FieldComplex.getPi()
Get the Archimedes constant π.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getPi(Field<T> field)
Get a complex number representing "π + 0.0i".
|
FieldComplex<T> |
FieldComplexField.getZero()
Get the additive identity of the field.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.getZero(Field<T> field)
Get a complex number representing "0.0 + 0.0i".
|
FieldComplex<T> |
FieldComplex.hypot(FieldComplex<T> y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T>... path)
Integrate a function along a polyline path between any number of points.
|
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T> end)
Integrate a function along a straight path between points.
|
FieldComplex<T> |
FieldComplex.linearCombination(double[] a,
FieldComplex<T>[] b)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3,
double a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T>[] a,
FieldComplex<T>[] b)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.log()
Compute the
natural logarithm of this complex number.
|
FieldComplex<T> |
FieldComplex.log10()
Base 10 logarithm.
|
FieldComplex<T> |
FieldComplex.log1p()
Shifted natural logarithm.
|
FieldComplex<T> |
FieldComplex.multiply(double factor)
Returns a
Complex whose value is this * factor , with factor
interpreted as a real number. |
FieldComplex<T> |
FieldComplex.multiply(FieldComplex<T> factor)
Returns a
Complex whose value is this * factor . |
FieldComplex<T> |
FieldComplex.multiply(int factor)
Returns a
Complex whose value is this * factor , with factor
interpreted as a integer number. |
FieldComplex<T> |
FieldComplex.multiply(T factor)
Returns a
Complex whose value is this * factor , with factor
interpreted as a real number. |
FieldComplex<T> |
FieldComplex.multiplyMinusI()
Compute this *- -i.
|
FieldComplex<T> |
FieldComplex.multiplyPlusI()
Compute this * i.
|
FieldComplex<T> |
FieldComplex.negate()
Returns a
Complex whose value is (-this) . |
FieldComplex<T> |
FieldComplex.newInstance(double realPart)
Create an instance corresponding to a constant real value.
|
static <T extends CalculusFieldElement<T>> |
ComplexUtils.polar2Complex(T r,
T theta)
Creates a complex number from the given polar representation.
|
FieldComplex<T> |
FieldComplex.pow(double x)
Returns of value of this complex number raised to the power of
x . |
FieldComplex<T> |
FieldComplex.pow(FieldComplex<T> x)
Returns of value of this complex number raised to the power of
x . |
FieldComplex<T> |
FieldComplex.pow(int n)
Integer power operation.
|
FieldComplex<T> |
FieldComplex.pow(T x)
Returns of value of this complex number raised to the power of
x . |
FieldComplex<T> |
FieldComplex.reciprocal()
Returns the multiplicative inverse of
this element. |
FieldComplex<T> |
FieldComplex.remainder(double a)
IEEE remainder operator.
|
FieldComplex<T> |
FieldComplex.remainder(FieldComplex<T> a)
IEEE remainder operator.
|
FieldComplex<T> |
FieldComplex.rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
FieldComplex<T> |
FieldComplex.rootN(int n)
Nth root.
|
FieldComplex<T> |
FieldComplex.scalb(int n)
Multiply the instance by a power of 2.
|
FieldComplex<T> |
FieldComplex.sign()
Compute the sign of the instance.
|
FieldComplex<T> |
FieldComplex.sin()
Compute the
sine
of this complex number.
|
FieldComplex<T> |
FieldComplex.sinh()
Compute the
hyperbolic sine of this complex number.
|
FieldComplex<T> |
FieldComplex.sqrt()
Compute the
square root of this complex number.
|
FieldComplex<T> |
FieldComplex.sqrt1z()
Compute the
square root of
1 - this2 for this complex
number. |
FieldComplex<T> |
FieldComplex.subtract(double subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
FieldComplex<T> |
FieldComplex.subtract(FieldComplex<T> subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
FieldComplex<T> |
FieldComplex.subtract(T subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
FieldComplex<T> |
FieldComplex.tan()
Compute the
tangent of this complex number.
|
FieldComplex<T> |
FieldComplex.tanh()
Compute the
hyperbolic tangent of this complex number.
|
FieldComplex<T> |
FieldComplex.toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
|
FieldComplex<T> |
FieldComplex.toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
|
FieldComplex<T> |
FieldComplex.ulp()
Compute least significant bit (Unit in Last Position) for a number.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.valueOf(T realPart)
Create a complex number given only the real part.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.valueOf(T realPart,
T imaginaryPart)
Create a complex number given the real and imaginary parts.
|
Modifier and Type | Method and Description |
---|---|
Class<FieldComplex<T>> |
FieldComplexField.getRuntimeClass()
Returns the runtime class of the FieldElement.
|
List<FieldComplex<T>> |
FieldComplex.nthRoot(int n)
Computes the n-th roots of this complex number.
|
FieldSinCos<FieldComplex<T>> |
FieldComplex.sinCos()
Combined Sine and Cosine operation.
|
FieldSinhCosh<FieldComplex<T>> |
FieldComplex.sinhCosh()
Combined hyperbolic sine and sosine operation.
|
Modifier and Type | Method and Description |
---|---|
FieldComplex<T> |
FieldComplex.add(FieldComplex<T> addend)
Returns a
Complex whose value is
(this + addend) . |
FieldComplex<T> |
FieldComplex.atan2(FieldComplex<T> x)
Two arguments arc tangent operation.
|
FieldComplex<T> |
FieldComplex.copySign(FieldComplex<T> z)
Returns the instance with the sign of the argument.
|
FieldComplex<T> |
FieldComplex.divide(FieldComplex<T> divisor)
Returns a
Complex whose value is
(this / divisor) . |
static <T extends CalculusFieldElement<T>> |
FieldComplex.equals(FieldComplex<T> x,
FieldComplex<T> y)
Returns
true iff the values are equal as defined by
equals(x, y, 1) . |
static <T extends CalculusFieldElement<T>> |
FieldComplex.equals(FieldComplex<T> x,
FieldComplex<T> y)
Returns
true iff the values are equal as defined by
equals(x, y, 1) . |
static <T extends CalculusFieldElement<T>> |
FieldComplex.equals(FieldComplex<T> x,
FieldComplex<T> y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no T value strictly between the arguments or the
difference between them is within the range of allowed error
(inclusive). |
static <T extends CalculusFieldElement<T>> |
FieldComplex.equals(FieldComplex<T> x,
FieldComplex<T> y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no T value strictly between the arguments or the
difference between them is within the range of allowed error
(inclusive). |
static <T extends CalculusFieldElement<T>> |
FieldComplex.equals(FieldComplex<T> x,
FieldComplex<T> y,
int maxUlps)
Test for the floating-point equality between Complex objects.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.equals(FieldComplex<T> x,
FieldComplex<T> y,
int maxUlps)
Test for the floating-point equality between Complex objects.
|
static <T extends CalculusFieldElement<T>> |
FieldComplex.equalsWithRelativeTolerance(FieldComplex<T> x,
FieldComplex<T> y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no T value strictly between the arguments or the
relative difference between them is smaller or equal to the given
tolerance. |
static <T extends CalculusFieldElement<T>> |
FieldComplex.equalsWithRelativeTolerance(FieldComplex<T> x,
FieldComplex<T> y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no T value strictly between the arguments or the
relative difference between them is smaller or equal to the given
tolerance. |
FieldComplex<T> |
FieldComplex.hypot(FieldComplex<T> y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T>... path)
Integrate a function along a polyline path between any number of points.
|
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T>... path)
Integrate a function along a polyline path between any number of points.
|
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T> end)
Integrate a function along a straight path between points.
|
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T> end)
Integrate a function along a straight path between points.
|
FieldComplex<T> |
FieldComplex.linearCombination(double[] a,
FieldComplex<T>[] b)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3,
double a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3,
double a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3,
double a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(double a1,
FieldComplex<T> b1,
double a2,
FieldComplex<T> b2,
double a3,
FieldComplex<T> b3,
double a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T>[] a,
FieldComplex<T>[] b)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T>[] a,
FieldComplex<T>[] b)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.linearCombination(FieldComplex<T> a1,
FieldComplex<T> b1,
FieldComplex<T> a2,
FieldComplex<T> b2,
FieldComplex<T> a3,
FieldComplex<T> b3,
FieldComplex<T> a4,
FieldComplex<T> b4)
Compute a linear combination.
|
FieldComplex<T> |
FieldComplex.multiply(FieldComplex<T> factor)
Returns a
Complex whose value is this * factor . |
FieldComplex<T> |
FieldComplex.pow(FieldComplex<T> x)
Returns of value of this complex number raised to the power of
x . |
FieldComplex<T> |
FieldComplex.remainder(FieldComplex<T> a)
IEEE remainder operator.
|
FieldComplex<T> |
FieldComplex.subtract(FieldComplex<T> subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
Modifier and Type | Method and Description |
---|---|
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T>... path)
Integrate a function along a polyline path between any number of points.
|
FieldComplex<T> |
FieldComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<FieldComplex<T>> f,
FieldComplex<T> start,
FieldComplex<T> end)
Integrate a function along a straight path between points.
|
Modifier and Type | Method and Description |
---|---|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rC(FieldComplex<T> x,
FieldComplex<T> y)
Compute Carlson elliptic integral RC.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rD(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RD.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rF(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RF.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rG(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RG.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p,
FieldComplex<T> delta)
Compute Carlson elliptic integral RJ.
|
Modifier and Type | Method and Description |
---|---|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rC(FieldComplex<T> x,
FieldComplex<T> y)
Compute Carlson elliptic integral RC.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rC(FieldComplex<T> x,
FieldComplex<T> y)
Compute Carlson elliptic integral RC.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rD(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RD.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rD(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RD.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rD(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RD.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rF(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RF.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rF(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RF.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rF(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RF.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rG(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RG.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rG(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RG.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rG(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z)
Compute Carlson elliptic integral RG.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p,
FieldComplex<T> delta)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p,
FieldComplex<T> delta)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p,
FieldComplex<T> delta)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p,
FieldComplex<T> delta)
Compute Carlson elliptic integral RJ.
|
static <T extends CalculusFieldElement<T>> |
CarlsonEllipticIntegral.rJ(FieldComplex<T> x,
FieldComplex<T> y,
FieldComplex<T> z,
FieldComplex<T> p,
FieldComplex<T> delta)
Compute Carlson elliptic integral RJ.
|
Modifier and Type | Method and Description |
---|---|
static <T extends CalculusFieldElement<T>> |
JacobiEllipticBuilder.build(FieldComplex<T> m)
Build an algorithm for computing Jacobi elliptic functions.
|
Modifier and Type | Method and Description |
---|---|
static <T extends CalculusFieldElement<T>> |
JacobiEllipticBuilder.build(FieldComplex<T> m)
Build an algorithm for computing Jacobi elliptic functions.
|
Modifier and Type | Method and Description |
---|---|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigD(FieldComplex<T> m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigD(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> m)
Get the complete elliptic integral of the second kind E(m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigF(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigF(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigK(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K(m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigKPrime(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K'(m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
Modifier and Type | Method and Description |
---|---|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigD(FieldComplex<T> m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigD(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigD(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> m)
Get the complete elliptic integral of the second kind E(m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigE(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigF(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigF(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigF(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigF(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigK(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K(m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigKPrime(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K'(m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
LegendreEllipticIntegral.bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
Copyright © 2016-2022 CS GROUP. All rights reserved.