public class LegendreEllipticIntegral extends Object
The elliptic integrals are related to Jacobi elliptic functions.
There are different conventions to interpret the arguments of Legendre elliptic integrals. In mathematical texts, these conventions show up using the separator between arguments. So for example for the incomplete integral of the first kind F we have:
Modifier and Type | Method and Description |
---|---|
static Complex |
bigD(Complex m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static Complex |
bigD(Complex phi,
Complex m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static double |
bigD(double m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static double |
bigD(double phi,
double m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static <T extends CalculusFieldElement<T>> |
bigD(FieldComplex<T> m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static <T extends CalculusFieldElement<T>> |
bigD(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static <T extends CalculusFieldElement<T>> |
bigD(T m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static <T extends CalculusFieldElement<T>> |
bigD(T phi,
T m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static Complex |
bigE(Complex m)
Get the complete elliptic integral of the second kind E(m).
|
static Complex |
bigE(Complex phi,
Complex m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static Complex |
bigE(Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m) using numerical integration.
|
static double |
bigE(double m)
Get the complete elliptic integral of the second kind E(m).
|
static double |
bigE(double phi,
double m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigE(FieldComplex<T> m)
Get the complete elliptic integral of the second kind E(m).
|
static <T extends CalculusFieldElement<T>> |
bigE(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigE(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigE(T m)
Get the complete elliptic integral of the second kind E(m).
|
static <T extends CalculusFieldElement<T>> |
bigE(T phi,
T m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static Complex |
bigF(Complex phi,
Complex m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static Complex |
bigF(Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m) using numerical integration.
|
static double |
bigF(double phi,
double m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigF(FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigF(FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigF(T phi,
T m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static Complex |
bigK(Complex m)
Get the complete elliptic integral of the first kind K(m).
|
static double |
bigK(double m)
Get the complete elliptic integral of the first kind K(m).
|
static <T extends CalculusFieldElement<T>> |
bigK(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K(m).
|
static <T extends CalculusFieldElement<T>> |
bigK(T m)
Get the complete elliptic integral of the first kind K(m).
|
static Complex |
bigKPrime(Complex m)
Get the complete elliptic integral of the first kind K'(m).
|
static double |
bigKPrime(double m)
Get the complete elliptic integral of the first kind K'(m).
|
static <T extends CalculusFieldElement<T>> |
bigKPrime(FieldComplex<T> m)
Get the complete elliptic integral of the first kind K'(m).
|
static <T extends CalculusFieldElement<T>> |
bigKPrime(T m)
Get the complete elliptic integral of the first kind K'(m).
|
static Complex |
bigPi(Complex n,
Complex m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static Complex |
bigPi(Complex n,
Complex phi,
Complex m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static Complex |
bigPi(Complex n,
Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m) using numerical integration.
|
static double |
bigPi(double n,
double m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static double |
bigPi(double n,
double phi,
double m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigPi(FieldComplex<T> n,
FieldComplex<T> m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static <T extends CalculusFieldElement<T>> |
bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigPi(FieldComplex<T> n,
FieldComplex<T> phi,
FieldComplex<T> m,
FieldComplexUnivariateIntegrator<T> integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static <T extends CalculusFieldElement<T>> |
bigPi(T n,
T m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static <T extends CalculusFieldElement<T>> |
bigPi(T n,
T phi,
T m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static double |
nome(double m)
Get the nome q.
|
static <T extends CalculusFieldElement<T>> |
nome(T m)
Get the nome q.
|
public static double nome(double m)
m
- parameter (m=k² where k is the elliptic modulus)public static <T extends CalculusFieldElement<T>> T nome(T m)
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)public static double bigK(double m)
The complete elliptic integral of the first kind K(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \] it corresponds to the real quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigKPrime(double)
,
bigF(double, double)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> T bigK(T m)
The complete elliptic integral of the first kind K(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \] it corresponds to the real quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigKPrime(CalculusFieldElement)
,
bigF(CalculusFieldElement, CalculusFieldElement)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigK(Complex m)
The complete elliptic integral of the first kind K(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \] it corresponds to the real quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigKPrime(Complex)
,
bigF(Complex, Complex)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigK(FieldComplex<T> m)
The complete elliptic integral of the first kind K(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \] it corresponds to the real quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigKPrime(FieldComplex)
,
bigF(FieldComplex, FieldComplex)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static double bigKPrime(double m)
The complete elliptic integral of the first kind K'(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-(1-m) \sin^2\theta}} \] it corresponds to the imaginary quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigK(double)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> T bigKPrime(T m)
The complete elliptic integral of the first kind K'(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-(1-m) \sin^2\theta}} \] it corresponds to the imaginary quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigK(CalculusFieldElement)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigKPrime(Complex m)
The complete elliptic integral of the first kind K'(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-(1-m) \sin^2\theta}} \] it corresponds to the imaginary quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigK(Complex)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigKPrime(FieldComplex<T> m)
The complete elliptic integral of the first kind K'(m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-(1-m) \sin^2\theta}} \] it corresponds to the imaginary quarter-period of Jacobi elliptic functions
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigK(FieldComplex)
,
Complete Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static double bigE(double m)
The complete elliptic integral of the second kind E(m) is \[ \int_0^{\frac{\pi}{2}} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigE(double, double)
,
Complete Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> T bigE(T m)
The complete elliptic integral of the second kind E(m) is \[ \int_0^{\frac{\pi}{2}} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigE(CalculusFieldElement, CalculusFieldElement)
,
Complete Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigE(Complex m)
The complete elliptic integral of the second kind E(m) is \[ \int_0^{\frac{\pi}{2}} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigE(Complex, Complex)
,
Complete Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigE(FieldComplex<T> m)
The complete elliptic integral of the second kind E(m) is \[ \int_0^{\frac{\pi}{2}} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigE(FieldComplex, FieldComplex)
,
Complete Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static double bigD(double m)
The complete elliptic integral D(m) is \[ \int_0^{\frac{\pi}{2}} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigD(double, double)
public static <T extends CalculusFieldElement<T>> T bigD(T m)
The complete elliptic integral D(m) is \[ \int_0^{\frac{\pi}{2}} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigD(CalculusFieldElement, CalculusFieldElement)
public static Complex bigD(Complex m)
The complete elliptic integral D(m) is \[ \int_0^{\frac{\pi}{2}} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
m
- parameter (m=k² where k is the elliptic modulus)bigD(Complex, Complex)
public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigD(FieldComplex<T> m)
The complete elliptic integral D(m) is \[ \int_0^{\frac{\pi}{2}} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsm
- parameter (m=k² where k is the elliptic modulus)bigD(FieldComplex, FieldComplex)
public static double bigPi(double n, double m)
The complete elliptic integral of the third kind Π(n, m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
n
- elliptic characteristicm
- parameter (m=k² where k is the elliptic modulus)bigPi(double, double, double)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> T bigPi(T n, T m)
The complete elliptic integral of the third kind Π(n, m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsn
- elliptic characteristicm
- parameter (m=k² where k is the elliptic modulus)bigPi(CalculusFieldElement, CalculusFieldElement, CalculusFieldElement)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigPi(Complex n, Complex m)
The complete elliptic integral of the third kind Π(n, m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
n
- elliptic characteristicm
- parameter (m=k² where k is the elliptic modulus)bigPi(Complex, Complex, Complex)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigPi(FieldComplex<T> n, FieldComplex<T> m)
The complete elliptic integral of the third kind Π(n, m) is \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsn
- elliptic characteristicm
- parameter (m=k² where k is the elliptic modulus)bigPi(FieldComplex, FieldComplex, FieldComplex)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static double bigF(double phi, double m)
The incomplete elliptic integral of the first kind F(φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigK(double)
,
Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> T bigF(T phi, T m)
The incomplete elliptic integral of the first kind F(φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigK(CalculusFieldElement)
,
Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigF(Complex phi, Complex m)
The incomplete elliptic integral of the first kind F(φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigK(Complex)
,
Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigF(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)
The incomplete elliptic integral of the first kind F(φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \]
The algorithm for evaluating the functions is based on numerical integration.
If integration path comes too close to a pole of the integrand, then integration will fail
with a MathIllegalStateException
even for very large maxEval
. This is normal behavior.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)integrator
- integrator to usemaxEval
- maximum number of evaluations (real and imaginary
parts are evaluated separately, so up to twice this number may be used)bigK(Complex)
,
Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigF(FieldComplex<T> phi, FieldComplex<T> m)
The incomplete elliptic integral of the first kind F(φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigK(CalculusFieldElement)
,
Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigF(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)
The incomplete elliptic integral of the first kind F(φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}} \]
The algorithm for evaluating the functions is based on numerical integration.
If integration path comes too close to a pole of the integrand, then integration will fail
with a MathIllegalStateException
even for very large maxEval
. This is normal behavior.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)integrator
- integrator to usemaxEval
- maximum number of evaluations (real and imaginary
parts are evaluated separately, so up to twice this number may be used)bigK(CalculusFieldElement)
,
Elliptic Integrals of the First Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static double bigE(double phi, double m)
The incomplete elliptic integral of the second kind E(φ, m) is \[ \int_0^{\phi} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigE(double)
,
Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> T bigE(T phi, T m)
The incomplete elliptic integral of the second kind E(φ, m) is \[ \int_0^{\phi} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigE(CalculusFieldElement)
,
Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigE(Complex phi, Complex m)
The incomplete elliptic integral of the second kind E(φ, m) is \[ \int_0^{\phi} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigE(Complex)
,
Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigE(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)
The incomplete elliptic integral of the second kind E(φ, m) is \[ \int_0^{\phi} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on numerical integration.
If integration path comes too close to a pole of the integrand, then integration will fail
with a MathIllegalStateException
even for very large maxEval
. This is normal behavior.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)integrator
- integrator to usemaxEval
- maximum number of evaluations (real and imaginary
parts are evaluated separately, so up to twice this number may be used)bigE(Complex)
,
Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigE(FieldComplex<T> phi, FieldComplex<T> m)
The incomplete elliptic integral of the second kind E(φ, m) is \[ \int_0^{\phi} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigE(FieldComplex)
,
Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigE(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)
The incomplete elliptic integral of the second kind E(φ, m) is \[ \int_0^{\phi} \sqrt{1-m \sin^2\theta} d\theta \]
The algorithm for evaluating the functions is based on numerical integration.
If integration path comes too close to a pole of the integrand, then integration will fail
with a MathIllegalStateException
even for very large maxEval
. This is normal behavior.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)integrator
- integrator to usemaxEval
- maximum number of evaluations (real and imaginary
parts are evaluated separately, so up to twice this number may be used)bigE(FieldComplex)
,
Elliptic Integrals of the Second Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static double bigD(double phi, double m)
The incomplete elliptic integral D(φ, m) is \[ \int_0^{\phi} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigD(double)
public static <T extends CalculusFieldElement<T>> T bigD(T phi, T m)
The incomplete elliptic integral D(φ, m) is \[ \int_0^{\phi} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigD(CalculusFieldElement)
public static Complex bigD(Complex phi, Complex m)
The incomplete elliptic integral D(φ, m) is \[ \int_0^{\phi} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
phi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigD(Complex)
public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigD(FieldComplex<T> phi, FieldComplex<T> m)
The incomplete elliptic integral D(φ, m) is \[ \int_0^{\phi} \frac{\sin^2\theta}{\sqrt{1-m \sin^2\theta}} d\theta \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigD(CalculusFieldElement)
public static double bigPi(double n, double phi, double m)
The incomplete elliptic integral of the third kind Π(n, φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
n
- elliptic characteristicphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigPi(double, double)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> T bigPi(T n, T phi, T m)
The incomplete elliptic integral of the third kind Π(n, φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsn
- elliptic characteristicphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigPi(CalculusFieldElement, CalculusFieldElement)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigPi(Complex n, Complex phi, Complex m)
The incomplete elliptic integral of the third kind Π(n, φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
n
- elliptic characteristicphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigPi(Complex, Complex)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static Complex bigPi(Complex n, Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval)
The incomplete elliptic integral of the third kind Π(n, φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on numerical integration.
If integration path comes too close to a pole of the integrand, then integration will fail
with a MathIllegalStateException
even for very large maxEval
. This is normal behavior.
n
- elliptic characteristicphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)integrator
- integrator to usemaxEval
- maximum number of evaluations (real and imaginarybigPi(Complex, Complex)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigPi(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m)
The incomplete elliptic integral of the third kind Π(n, φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on Carlson elliptic integrals
.
T
- the type of the field elementsn
- elliptic characteristicphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)bigPi(FieldComplex, FieldComplex)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)public static <T extends CalculusFieldElement<T>> FieldComplex<T> bigPi(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval)
The incomplete elliptic integral of the third kind Π(n, φ, m) is \[ \int_0^{\phi} \frac{d\theta}{\sqrt{1-m \sin^2\theta}(1-n \sin^2\theta)} \]
The algorithm for evaluating the functions is based on numerical integration.
If integration path comes too close to a pole of the integrand, then integration will fail
with a MathIllegalStateException
even for very large maxEval
. This is normal behavior.
T
- the type of the field elementsn
- elliptic characteristicphi
- amplitude (i.e. upper bound of the integral)m
- parameter (m=k² where k is the elliptic modulus)integrator
- integrator to usemaxEval
- maximum number of evaluations (real and imaginary
parts are evaluated separately, so up to twice this number may be used)bigPi(FieldComplex, FieldComplex)
,
Elliptic Integrals of the Third Kind (MathWorld),
Elliptic Integrals (Wikipedia)Copyright © 2016-2022 CS GROUP. All rights reserved.