public class NormalDistribution extends AbstractRealDistribution
DEFAULT_SOLVER_ABSOLUTE_ACCURACY| Constructor and Description |
|---|
NormalDistribution()
Create a normal distribution with mean equal to zero and standard
deviation equal to one.
|
NormalDistribution(double mean,
double sd)
Create a normal distribution using the given mean, standard deviation.
|
| Modifier and Type | Method and Description |
|---|---|
double |
cumulativeProbability(double x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x). |
double |
density(double x)
Returns the probability density function (PDF) of this distribution
evaluated at the specified point
x. |
double |
getMean()
Access the mean.
|
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this
distribution.
|
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this
distribution.
|
double |
getStandardDeviation()
Access the standard deviation.
|
double |
getSupportLowerBound()
Access the lower bound of the support.
|
double |
getSupportUpperBound()
Access the upper bound of the support.
|
double |
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.
|
boolean |
isSupportConnected()
Use this method to get information about whether the support is connected,
i.e.
|
double |
logDensity(double x)
Returns the natural logarithm of the probability density function
(PDF) of this distribution evaluated at the specified point
x. |
double |
probability(double x0,
double x1)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1). |
getSolverAbsoluteAccuracypublic NormalDistribution()
public NormalDistribution(double mean,
double sd)
throws MathIllegalArgumentException
mean - Mean for this distribution.sd - Standard deviation for this distribution.MathIllegalArgumentException - if sd <= 0.public double getMean()
public double getStandardDeviation()
public double density(double x)
x. In general, the PDF is
the derivative of the CDF.
If the derivative does not exist at x, then an appropriate
replacement should be returned, e.g. Double.POSITIVE_INFINITY,
Double.NaN, or the limit inferior or limit superior of the
difference quotient.x - the point at which the PDF is evaluatedxpublic double logDensity(double x)
x.
In general, the PDF is the derivative of the CDF.
If the derivative does not exist at x, then an appropriate replacement
should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN,
or the limit inferior or limit superior of the difference quotient. Note that
due to the floating point precision and under/overflow issues, this method will
for some distributions be more precise and faster than computing the logarithm of
RealDistribution.density(double).
The default implementation simply computes the logarithm of density(x).
logDensity in interface RealDistributionlogDensity in class AbstractRealDistributionx - the point at which the PDF is evaluatedxpublic double cumulativeProbability(double x)
X whose values are distributed according
to this distribution, this method returns P(X <= x). In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.
If x is more than 40 standard deviations from the mean, 0 or 1
is returned, as in these cases the actual value is within
Double.MIN_VALUE of 0 or 1.x - the point at which the CDF is evaluatedxpublic double inverseCumulativeProbability(double p)
throws MathIllegalArgumentException
X distributed according to this distribution, the
returned value is
inf{x in R | P(X<=x) >= p} for 0 < p <= 1,inf{x in R | P(X<=x) > 0} for p = 0.RealDistribution.getSupportLowerBound() for p = 0,RealDistribution.getSupportUpperBound() for p = 1.inverseCumulativeProbability in interface RealDistributioninverseCumulativeProbability in class AbstractRealDistributionp - the cumulative probabilityp-quantile of this distribution
(largest 0-quantile for p = 0)MathIllegalArgumentException - if p < 0 or p > 1public double probability(double x0,
double x1)
throws MathIllegalArgumentException
X whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1).probability in interface RealDistributionprobability in class AbstractRealDistributionx0 - Lower bound (excluded).x1 - Upper bound (included).x0 and x1, excluding the lower
and including the upper endpoint.MathIllegalArgumentException - if x0 > x1.
The default implementation uses the identity
P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)public double getNumericalMean()
mu, the mean is mu.Double.NaN if it is not definedpublic double getNumericalVariance()
s, the variance is s^2.Double.POSITIVE_INFINITY as
for certain cases in TDistribution)
or Double.NaN if it is not definedpublic double getSupportLowerBound()
inverseCumulativeProbability(0). In other words, this
method must return
inf {x in R | P(X <= x) > 0}.
Double.NEGATIVE_INFINITY)public double getSupportUpperBound()
inverseCumulativeProbability(1). In other words, this
method must return
inf {x in R | P(X <= x) = 1}.
Double.POSITIVE_INFINITY)public boolean isSupportConnected()
trueCopyright © 2016-2021 CS GROUP. All rights reserved.