public interface RealDistribution
| Modifier and Type | Method and Description |
|---|---|
double |
cumulativeProbability(double x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x). |
double |
density(double x)
Returns the probability density function (PDF) of this distribution
evaluated at the specified point
x. |
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this
distribution.
|
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this
distribution.
|
double |
getSupportLowerBound()
Access the lower bound of the support.
|
double |
getSupportUpperBound()
Access the upper bound of the support.
|
double |
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.
|
boolean |
isSupportConnected()
Use this method to get information about whether the support is connected,
i.e.
|
double |
logDensity(double x)
Returns the natural logarithm of the probability density function
(PDF) of this distribution evaluated at the specified point
x. |
double |
probability(double x0,
double x1)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1). |
double probability(double x0,
double x1)
throws MathIllegalArgumentException
X whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1).x0 - the exclusive lower boundx1 - the inclusive upper boundx0 and x1,
excluding the lower and including the upper endpointMathIllegalArgumentException - if x0 > x1double density(double x)
x. In general, the PDF is
the derivative of the CDF.
If the derivative does not exist at x, then an appropriate
replacement should be returned, e.g. Double.POSITIVE_INFINITY,
Double.NaN, or the limit inferior or limit superior of the
difference quotient.x - the point at which the PDF is evaluatedxdouble logDensity(double x)
x.
In general, the PDF is the derivative of the CDF.
If the derivative does not exist at x, then an appropriate replacement
should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN,
or the limit inferior or limit superior of the difference quotient. Note that
due to the floating point precision and under/overflow issues, this method will
for some distributions be more precise and faster than computing the logarithm of
density(double).x - the point at which the PDF is evaluatedxdouble cumulativeProbability(double x)
X whose values are distributed according
to this distribution, this method returns P(X <= x). In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.x - the point at which the CDF is evaluatedxdouble inverseCumulativeProbability(double p)
throws MathIllegalArgumentException
X distributed according to this distribution, the
returned value is
inf{x in R | P(X<=x) >= p} for 0 < p <= 1,inf{x in R | P(X<=x) > 0} for p = 0.p - the cumulative probabilityp-quantile of this distribution
(largest 0-quantile for p = 0)MathIllegalArgumentException - if p < 0 or p > 1double getNumericalMean()
Double.NaN if it is not defineddouble getNumericalVariance()
Double.POSITIVE_INFINITY as
for certain cases in TDistribution)
or Double.NaN if it is not defineddouble getSupportLowerBound()
inverseCumulativeProbability(0). In other words, this
method must return
inf {x in R | P(X <= x) > 0}.
Double.NEGATIVE_INFINITY)double getSupportUpperBound()
inverseCumulativeProbability(1). In other words, this
method must return
inf {x in R | P(X <= x) = 1}.
Double.POSITIVE_INFINITY)boolean isSupportConnected()
Copyright © 2016-2021 CS GROUP. All rights reserved.