Package | Description |
---|---|
org.hipparchus.analysis.solvers |
Root finding algorithms, for univariate real functions.
|
org.hipparchus.complex |
Complex number type and implementations of complex transcendental
functions.
|
org.hipparchus.linear |
Linear algebra support.
|
org.hipparchus.ode |
This package provides classes to solve Ordinary Differential Equations problems.
|
org.hipparchus.samples.complex |
Complex functions plots.
|
org.hipparchus.special.elliptic.carlson |
Implementations of Carlson elliptic integrals.
|
org.hipparchus.special.elliptic.jacobi |
Implementations of Jacobi elliptic functions.
|
org.hipparchus.special.elliptic.legendre |
Implementations of Legendre elliptic integrals.
|
org.hipparchus.transform |
Implementations of transform methods, including Fast Fourier transforms.
|
Modifier and Type | Method and Description |
---|---|
Complex[] |
LaguerreSolver.solveAllComplex(double[] coefficients,
double initial)
Find all complex roots for the polynomial with the given
coefficients, starting from the given initial value.
|
Complex |
LaguerreSolver.solveComplex(double[] coefficients,
double initial)
Find a complex root for the polynomial with the given coefficients,
starting from the given initial value.
|
Modifier and Type | Field and Description |
---|---|
static Complex |
Complex.I
The square root of -1.
|
static Complex |
Complex.INF
A complex number representing "+INF + INFi"
|
static Complex |
Complex.MINUS_I
The square root of -1.
|
static Complex |
Complex.MINUS_ONE
A complex number representing "-1.0 + 0.0i".
|
static Complex |
Complex.NaN
A complex number representing "NaN + NaNi".
|
static Complex |
Complex.ONE
A complex number representing "1.0 + 0.0i".
|
static Complex |
Complex.PI
A complex number representing "π + 0.0i".
|
static Complex |
Complex.ZERO
A complex number representing "0.0 + 0.0i".
|
Modifier and Type | Method and Description |
---|---|
Complex |
Complex.abs()
Return the absolute value of this complex number.
|
Complex |
Complex.acos()
Compute the
inverse cosine of this complex number.
|
Complex |
Complex.acosh()
Inverse hyperbolic cosine operation.
|
Complex |
Complex.add(Complex addend)
Returns a
Complex whose value is
(this + addend) . |
Complex |
Complex.add(double addend)
Returns a
Complex whose value is (this + addend) ,
with addend interpreted as a real number. |
Complex |
Complex.asin()
Compute the
inverse sine of this complex number.
|
Complex |
Complex.asinh()
Inverse hyperbolic sine operation.
|
Complex |
Complex.atan()
Compute the
inverse tangent of this complex number.
|
Complex |
Complex.atan2(Complex x)
Two arguments arc tangent operation.
|
Complex |
Complex.atanh()
Inverse hyperbolic tangent operation.
|
Complex |
Complex.cbrt()
Cubic root.
|
Complex |
Complex.ceil()
Get the smallest whole number larger than instance.
|
Complex |
Complex.conjugate()
Returns the conjugate of this complex number.
|
static Complex[] |
ComplexUtils.convertToComplex(double[] real)
Convert an array of primitive doubles to an array of
Complex objects. |
Complex |
Complex.copySign(Complex z)
Returns the instance with the sign of the argument.
|
Complex |
Complex.copySign(double r)
Returns the instance with the sign of the argument.
|
Complex |
Complex.cos()
Compute the
cosine of this complex number.
|
Complex |
Complex.cosh()
Compute the
hyperbolic cosine of this complex number.
|
protected Complex |
Complex.createComplex(double realPart,
double imaginaryPart)
Create a complex number given the real and imaginary parts.
|
Complex |
Complex.divide(Complex divisor)
Returns a
Complex whose value is
(this / divisor) . |
Complex |
Complex.divide(double divisor)
Returns a
Complex whose value is (this / divisor) ,
with divisor interpreted as a real number. |
Complex |
Complex.exp()
Compute the
exponential function of this complex number.
|
Complex |
Complex.expm1()
Exponential minus 1.
|
Complex |
Complex.floor()
Get the largest whole number smaller than instance.
|
Complex |
ComplexField.getOne()
Get the multiplicative identity of the field.
|
Complex |
Complex.getPi()
Get the Archimedes constant π.
|
Complex |
ComplexField.getZero()
Get the additive identity of the field.
|
Complex |
Complex.hypot(Complex y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
Complex |
ComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<Complex> f,
Complex start,
Complex... path)
Integrate a function along a polyline path between any number of points.
|
Complex |
ComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<Complex> f,
Complex start,
Complex end)
Integrate a function along a straight path between points.
|
Complex |
Complex.linearCombination(Complex[] a,
Complex[] b)
Compute a linear combination.
|
Complex |
Complex.linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2)
Compute a linear combination.
|
Complex |
Complex.linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2,
Complex a3,
Complex b3)
Compute a linear combination.
|
Complex |
Complex.linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2,
Complex a3,
Complex b3,
Complex a4,
Complex b4)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double[] a,
Complex[] b)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double a1,
Complex b1,
double a2,
Complex b2)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double a1,
Complex b1,
double a2,
Complex b2,
double a3,
Complex b3)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double a1,
Complex b1,
double a2,
Complex b2,
double a3,
Complex b3,
double a4,
Complex b4)
Compute a linear combination.
|
Complex |
Complex.log()
Compute the
natural logarithm of this complex number.
|
Complex |
Complex.log10()
Base 10 logarithm.
|
Complex |
Complex.log1p()
Shifted natural logarithm.
|
Complex |
Complex.multiply(Complex factor)
Returns a
Complex whose value is this * factor . |
Complex |
Complex.multiply(double factor)
Returns a
Complex whose value is this * factor , with factor
interpreted as a real number. |
Complex |
Complex.multiply(int factor)
Returns a
Complex whose value is this * factor , with factor
interpreted as a integer number. |
Complex |
Complex.multiplyMinusI()
Compute this *- -i.
|
Complex |
Complex.multiplyPlusI()
Compute this * i.
|
Complex |
Complex.negate()
Returns a
Complex whose value is (-this) . |
Complex |
Complex.newInstance(double realPart)
Create an instance corresponding to a constant real value.
|
Complex |
ComplexFormat.parse(String source)
Parses a string to produce a
Complex object. |
Complex |
ComplexFormat.parse(String source,
ParsePosition pos)
Parses a string to produce a
Complex object. |
static Complex |
ComplexUtils.polar2Complex(double r,
double theta)
Creates a complex number from the given polar representation.
|
Complex |
Complex.pow(Complex x)
Returns of value of this complex number raised to the power of
x . |
Complex |
Complex.pow(double x)
Returns of value of this complex number raised to the power of
x . |
Complex |
Complex.pow(int n)
Integer power operation.
|
Complex |
Complex.reciprocal()
Returns the multiplicative inverse of
this element. |
Complex |
Complex.remainder(Complex a)
IEEE remainder operator.
|
Complex |
Complex.remainder(double a)
IEEE remainder operator.
|
Complex |
Complex.rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
Complex |
Complex.rootN(int n)
Nth root.
|
Complex |
Complex.scalb(int n)
Multiply the instance by a power of 2.
|
Complex |
Complex.sign()
Compute the sign of the instance.
|
Complex |
Complex.sin()
Compute the
sine
of this complex number.
|
Complex |
Complex.sinh()
Compute the
hyperbolic sine of this complex number.
|
Complex |
Complex.sqrt()
Compute the
square root of this complex number.
|
Complex |
Complex.sqrt1z()
Compute the
square root of
1 - this2 for this complex
number. |
Complex |
Complex.subtract(Complex subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
Complex |
Complex.subtract(double subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
Complex |
Complex.tan()
Compute the
tangent of this complex number.
|
Complex |
Complex.tanh()
Compute the
hyperbolic tangent of this complex number.
|
Complex |
Complex.toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
|
Complex |
Complex.toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
|
Complex |
Complex.ulp()
Compute least significant bit (Unit in Last Position) for a number.
|
static Complex |
Complex.valueOf(double realPart)
Create a complex number given only the real part.
|
static Complex |
Complex.valueOf(double realPart,
double imaginaryPart)
Create a complex number given the real and imaginary parts.
|
Modifier and Type | Method and Description |
---|---|
Class<Complex> |
ComplexField.getRuntimeClass()
Returns the runtime class of the FieldElement.
|
List<Complex> |
Complex.nthRoot(int n)
Computes the n-th roots of this complex number.
|
FieldSinCos<Complex> |
Complex.sinCos()
Combined Sine and Cosine operation.
|
FieldSinhCosh<Complex> |
Complex.sinhCosh()
Combined hyperbolic sine and sosine operation.
|
Modifier and Type | Method and Description |
---|---|
Complex |
Complex.add(Complex addend)
Returns a
Complex whose value is
(this + addend) . |
Complex |
Complex.atan2(Complex x)
Two arguments arc tangent operation.
|
int |
ComplexComparator.compare(Complex o1,
Complex o2)
Compare two complex numbers, using real ordering as the primary sort order and
imaginary ordering as the secondary sort order.
|
Complex |
Complex.copySign(Complex z)
Returns the instance with the sign of the argument.
|
Complex |
Complex.divide(Complex divisor)
Returns a
Complex whose value is
(this / divisor) . |
static boolean |
Complex.equals(Complex x,
Complex y)
Returns
true iff the values are equal as defined by
equals(x, y, 1) . |
static boolean |
Complex.equals(Complex x,
Complex y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no double value strictly between the arguments or the
difference between them is within the range of allowed error
(inclusive). |
static boolean |
Complex.equals(Complex x,
Complex y,
int maxUlps)
Test for the floating-point equality between Complex objects.
|
static boolean |
Complex.equalsWithRelativeTolerance(Complex x,
Complex y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no double value strictly between the arguments or the
relative difference between them is smaller or equal to the given
tolerance. |
String |
ComplexFormat.format(Complex c)
This method calls
ComplexFormat.format(Object,StringBuffer,FieldPosition) . |
StringBuffer |
ComplexFormat.format(Complex complex,
StringBuffer toAppendTo,
FieldPosition pos)
Formats a
Complex object to produce a string. |
Complex |
Complex.hypot(Complex y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
Complex |
ComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<Complex> f,
Complex start,
Complex... path)
Integrate a function along a polyline path between any number of points.
|
Complex |
ComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<Complex> f,
Complex start,
Complex... path)
Integrate a function along a polyline path between any number of points.
|
Complex |
ComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<Complex> f,
Complex start,
Complex end)
Integrate a function along a straight path between points.
|
Complex |
Complex.linearCombination(Complex[] a,
Complex[] b)
Compute a linear combination.
|
Complex |
Complex.linearCombination(Complex[] a,
Complex[] b)
Compute a linear combination.
|
Complex |
Complex.linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2)
Compute a linear combination.
|
Complex |
Complex.linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2,
Complex a3,
Complex b3)
Compute a linear combination.
|
Complex |
Complex.linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2,
Complex a3,
Complex b3,
Complex a4,
Complex b4)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double[] a,
Complex[] b)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double a1,
Complex b1,
double a2,
Complex b2)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double a1,
Complex b1,
double a2,
Complex b2,
double a3,
Complex b3)
Compute a linear combination.
|
Complex |
Complex.linearCombination(double a1,
Complex b1,
double a2,
Complex b2,
double a3,
Complex b3,
double a4,
Complex b4)
Compute a linear combination.
|
Complex |
Complex.multiply(Complex factor)
Returns a
Complex whose value is this * factor . |
Complex |
Complex.pow(Complex x)
Returns of value of this complex number raised to the power of
x . |
Complex |
Complex.remainder(Complex a)
IEEE remainder operator.
|
Complex |
Complex.subtract(Complex subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
Modifier and Type | Method and Description |
---|---|
Complex |
ComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<Complex> f,
Complex start,
Complex... path)
Integrate a function along a polyline path between any number of points.
|
Complex |
ComplexUnivariateIntegrator.integrate(int maxEval,
CalculusFieldUnivariateFunction<Complex> f,
Complex start,
Complex end)
Integrate a function along a straight path between points.
|
Modifier and Type | Method and Description |
---|---|
Complex[] |
ComplexEigenDecomposition.getEigenvalues()
Getter of the eigen values.
|
Modifier and Type | Method and Description |
---|---|
FieldMatrix<Complex> |
ComplexEigenDecomposition.getD()
Getter D.
|
FieldVector<Complex> |
ComplexEigenDecomposition.getEigenvector(int i)
Getter of the eigen vectors.
|
FieldMatrix<Complex> |
ComplexEigenDecomposition.getV()
Getter V.
|
FieldMatrix<Complex> |
ComplexEigenDecomposition.getVT()
Getter VT.
|
FieldMatrix<Complex> |
OrderedComplexEigenDecomposition.getVT()
Getter VT.
|
Modifier and Type | Method and Description |
---|---|
protected void |
ComplexEigenDecomposition.findEigenVectors(FieldMatrix<Complex> matrix)
Compute the eigen vectors using the inverse power method.
|
Modifier and Type | Method and Description |
---|---|
Complex[] |
ComplexOrdinaryDifferentialEquation.computeDerivatives(double t,
Complex[] y)
Get the current time derivative of the state vector.
|
Complex[] |
ComplexSecondaryODE.computeDerivatives(double t,
Complex[] primary,
Complex[] primaryDot,
Complex[] secondary)
Compute the derivatives related to the secondary state parameters.
|
protected Complex[][] |
ComplexODEState.copy(Complex[][] original)
Copy a two-dimensions array.
|
Complex[] |
ComplexODEStateAndDerivative.getCompleteDerivative()
Get complete derivative at time.
|
Complex[] |
ComplexODEState.getCompleteState()
Get complete state at time.
|
Complex[] |
ComplexODEStateAndDerivative.getPrimaryDerivative()
Get derivative of the primary state at time.
|
Complex[] |
ComplexODEState.getPrimaryState()
Get primary state at time.
|
Complex[] |
ComplexODEStateAndDerivative.getSecondaryDerivative(int index)
Get derivative of the secondary state at time.
|
Complex[] |
ComplexODEState.getSecondaryState(int index)
Get secondary state at time.
|
Modifier and Type | Method and Description |
---|---|
Complex[] |
ComplexOrdinaryDifferentialEquation.computeDerivatives(double t,
Complex[] y)
Get the current time derivative of the state vector.
|
Complex[] |
ComplexSecondaryODE.computeDerivatives(double t,
Complex[] primary,
Complex[] primaryDot,
Complex[] secondary)
Compute the derivatives related to the secondary state parameters.
|
Complex[] |
ComplexSecondaryODE.computeDerivatives(double t,
Complex[] primary,
Complex[] primaryDot,
Complex[] secondary)
Compute the derivatives related to the secondary state parameters.
|
Complex[] |
ComplexSecondaryODE.computeDerivatives(double t,
Complex[] primary,
Complex[] primaryDot,
Complex[] secondary)
Compute the derivatives related to the secondary state parameters.
|
protected Complex[][] |
ComplexODEState.copy(Complex[][] original)
Copy a two-dimensions array.
|
default void |
ComplexSecondaryODE.init(double t0,
Complex[] primary0,
Complex[] secondary0,
double finalTime)
Initialize equations at the start of an ODE integration.
|
default void |
ComplexSecondaryODE.init(double t0,
Complex[] primary0,
Complex[] secondary0,
double finalTime)
Initialize equations at the start of an ODE integration.
|
default void |
ComplexOrdinaryDifferentialEquation.init(double t0,
Complex[] y0,
double finalTime)
Initialize equations at the start of an ODE integration.
|
Constructor and Description |
---|
ComplexODEState(double time,
Complex[] primaryState)
Simple constructor.
|
ComplexODEState(double time,
Complex[] primaryState,
Complex[][] secondaryState)
Simple constructor.
|
ComplexODEState(double time,
Complex[] primaryState,
Complex[][] secondaryState)
Simple constructor.
|
ComplexODEStateAndDerivative(double time,
Complex[] primaryState,
Complex[] primaryDerivative)
Simple constructor.
|
ComplexODEStateAndDerivative(double time,
Complex[] primaryState,
Complex[] primaryDerivative)
Simple constructor.
|
ComplexODEStateAndDerivative(double time,
Complex[] primaryState,
Complex[] primaryDerivative,
Complex[][] secondaryState,
Complex[][] secondaryDerivative)
Simple constructor.
|
ComplexODEStateAndDerivative(double time,
Complex[] primaryState,
Complex[] primaryDerivative,
Complex[][] secondaryState,
Complex[][] secondaryDerivative)
Simple constructor.
|
ComplexODEStateAndDerivative(double time,
Complex[] primaryState,
Complex[] primaryDerivative,
Complex[][] secondaryState,
Complex[][] secondaryDerivative)
Simple constructor.
|
ComplexODEStateAndDerivative(double time,
Complex[] primaryState,
Complex[] primaryDerivative,
Complex[][] secondaryState,
Complex[][] secondaryDerivative)
Simple constructor.
|
Modifier and Type | Method and Description |
---|---|
double |
DomainColoring.hue(Complex z)
Continuous hue.
|
double |
DomainColoring.saturation(Complex z)
Get saturation for a complex value.
|
double |
SawToothPhaseModuleValue.value(Complex z)
Get value for a complex value.
|
double |
ContinuousModuleValue.value(Complex z)
Get value for a complex value.
|
double |
SawToothModuleValue.value(Complex z)
Get value for a complex value.
|
protected abstract double |
DomainColoring.value(Complex z)
Get value for a complex value.
|
Modifier and Type | Method and Description |
---|---|
static Complex |
CarlsonEllipticIntegral.rC(Complex x,
Complex y)
Compute Carlson elliptic integral RC.
|
static Complex |
CarlsonEllipticIntegral.rD(Complex x,
Complex y,
Complex z)
Compute Carlson elliptic integral RD.
|
static Complex |
CarlsonEllipticIntegral.rF(Complex x,
Complex y,
Complex z)
Compute Carlson elliptic integral RF.
|
static Complex |
CarlsonEllipticIntegral.rG(Complex x,
Complex y,
Complex z)
Compute Carlson elliptic integral RG.
|
static Complex |
CarlsonEllipticIntegral.rJ(Complex x,
Complex y,
Complex z,
Complex p)
Compute Carlson elliptic integral RJ.
|
static Complex |
CarlsonEllipticIntegral.rJ(Complex x,
Complex y,
Complex z,
Complex p,
Complex delta)
Compute Carlson elliptic integral RJ.
|
Modifier and Type | Method and Description |
---|---|
static Complex |
CarlsonEllipticIntegral.rC(Complex x,
Complex y)
Compute Carlson elliptic integral RC.
|
static Complex |
CarlsonEllipticIntegral.rD(Complex x,
Complex y,
Complex z)
Compute Carlson elliptic integral RD.
|
static Complex |
CarlsonEllipticIntegral.rF(Complex x,
Complex y,
Complex z)
Compute Carlson elliptic integral RF.
|
static Complex |
CarlsonEllipticIntegral.rG(Complex x,
Complex y,
Complex z)
Compute Carlson elliptic integral RG.
|
static Complex |
CarlsonEllipticIntegral.rJ(Complex x,
Complex y,
Complex z,
Complex p)
Compute Carlson elliptic integral RJ.
|
static Complex |
CarlsonEllipticIntegral.rJ(Complex x,
Complex y,
Complex z,
Complex p,
Complex delta)
Compute Carlson elliptic integral RJ.
|
Modifier and Type | Method and Description |
---|---|
Complex |
Theta.theta1()
Get the value of the θ₁(z|τ) function.
|
Complex |
Theta.theta2()
Get the value of the θ₂(z|τ) function.
|
Complex |
Theta.theta3()
Get the value of the θ₃(z|τ) function.
|
Complex |
Theta.theta4()
Get the value of the θ₄(z|τ) function.
|
Modifier and Type | Method and Description |
---|---|
static FieldJacobiElliptic<Complex> |
JacobiEllipticBuilder.build(Complex m)
Build an algorithm for computing Jacobi elliptic functions.
|
Modifier and Type | Method and Description |
---|---|
static FieldJacobiElliptic<Complex> |
JacobiEllipticBuilder.build(Complex m)
Build an algorithm for computing Jacobi elliptic functions.
|
Theta |
JacobiTheta.values(Complex z)
Evaluate the Jacobi theta functions.
|
Modifier and Type | Method and Description |
---|---|
static Complex |
LegendreEllipticIntegral.bigD(Complex m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static Complex |
LegendreEllipticIntegral.bigD(Complex phi,
Complex m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static Complex |
LegendreEllipticIntegral.bigE(Complex m)
Get the complete elliptic integral of the second kind E(m).
|
static Complex |
LegendreEllipticIntegral.bigE(Complex phi,
Complex m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static Complex |
LegendreEllipticIntegral.bigE(Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m) using numerical integration.
|
static Complex |
LegendreEllipticIntegral.bigF(Complex phi,
Complex m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static Complex |
LegendreEllipticIntegral.bigF(Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m) using numerical integration.
|
static Complex |
LegendreEllipticIntegral.bigK(Complex m)
Get the complete elliptic integral of the first kind K(m).
|
static Complex |
LegendreEllipticIntegral.bigKPrime(Complex m)
Get the complete elliptic integral of the first kind K'(m).
|
static Complex |
LegendreEllipticIntegral.bigPi(Complex n,
Complex m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static Complex |
LegendreEllipticIntegral.bigPi(Complex n,
Complex phi,
Complex m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static Complex |
LegendreEllipticIntegral.bigPi(Complex n,
Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m) using numerical integration.
|
Modifier and Type | Method and Description |
---|---|
static Complex |
LegendreEllipticIntegral.bigD(Complex m)
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.
|
static Complex |
LegendreEllipticIntegral.bigD(Complex phi,
Complex m)
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.
|
static Complex |
LegendreEllipticIntegral.bigE(Complex m)
Get the complete elliptic integral of the second kind E(m).
|
static Complex |
LegendreEllipticIntegral.bigE(Complex phi,
Complex m)
Get the incomplete elliptic integral of the second kind E(φ, m).
|
static Complex |
LegendreEllipticIntegral.bigE(Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the second kind E(φ, m) using numerical integration.
|
static Complex |
LegendreEllipticIntegral.bigF(Complex phi,
Complex m)
Get the incomplete elliptic integral of the first kind F(φ, m).
|
static Complex |
LegendreEllipticIntegral.bigF(Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the first kind F(φ, m) using numerical integration.
|
static Complex |
LegendreEllipticIntegral.bigK(Complex m)
Get the complete elliptic integral of the first kind K(m).
|
static Complex |
LegendreEllipticIntegral.bigKPrime(Complex m)
Get the complete elliptic integral of the first kind K'(m).
|
static Complex |
LegendreEllipticIntegral.bigPi(Complex n,
Complex m)
Get the complete elliptic integral of the third kind Π(n, m).
|
static Complex |
LegendreEllipticIntegral.bigPi(Complex n,
Complex phi,
Complex m)
Get the incomplete elliptic integral of the third kind Π(n, φ, m).
|
static Complex |
LegendreEllipticIntegral.bigPi(Complex n,
Complex phi,
Complex m,
ComplexUnivariateIntegrator integrator,
int maxEval)
Get the incomplete elliptic integral of the third kind Π(n, φ, m) using numerical integration.
|
Modifier and Type | Method and Description |
---|---|
static Complex[] |
TransformUtils.createComplexArray(double[][] dataRI)
Builds a new array of
Complex from the specified two dimensional
array of real and imaginary parts. |
static Complex[] |
TransformUtils.scaleArray(Complex[] f,
double d)
Multiply every component in the given complex array by the
given real number.
|
Complex[] |
FastFourierTransformer.transform(Complex[] f,
TransformType type)
Returns the (forward, inverse) transform of the specified complex data set.
|
Complex[] |
FastFourierTransformer.transform(double[] f,
TransformType type)
Returns the (forward, inverse) transform of the specified real data set.
|
Complex[] |
FastFourierTransformer.transform(UnivariateFunction f,
double min,
double max,
int n,
TransformType type)
Returns the (forward, inverse) transform of the specified real function,
sampled on the specified interval.
|
Modifier and Type | Method and Description |
---|---|
static double[][] |
TransformUtils.createRealImaginaryArray(Complex[] dataC)
Builds a new two dimensional array of
double filled with the real
and imaginary parts of the specified Complex numbers. |
static Complex[] |
TransformUtils.scaleArray(Complex[] f,
double d)
Multiply every component in the given complex array by the
given real number.
|
Complex[] |
FastFourierTransformer.transform(Complex[] f,
TransformType type)
Returns the (forward, inverse) transform of the specified complex data set.
|
Copyright © 2016-2021 CS GROUP. All rights reserved.