public class JacobiEllipticBuilder extends Object
The Jacobi elliptic functions are related to elliptic integrals.
There are different conventions to interpret the arguments of Jacobi elliptic functions. The first argument may be the amplitude φ, but is more often the variable u (with sn(u) = sin(φ) and cn(u) = cos(φ)). The second argument is either the modulus k or the parameter m with m = k². In Hipparchus, we adopted the convention to use u and m.
Modifier and Type | Method and Description |
---|---|
static FieldJacobiElliptic<Complex> |
build(Complex m)
Build an algorithm for computing Jacobi elliptic functions.
|
static JacobiElliptic |
build(double m)
Build an algorithm for computing Jacobi elliptic functions.
|
static <T extends CalculusFieldElement<T>> |
build(FieldComplex<T> m)
Build an algorithm for computing Jacobi elliptic functions.
|
static <T extends CalculusFieldElement<T>> |
build(T m)
Build an algorithm for computing Jacobi elliptic functions.
|
public static JacobiElliptic build(double m)
m
- parameter of the Jacobi elliptic functionpublic static <T extends CalculusFieldElement<T>> FieldJacobiElliptic<T> build(T m)
T
- type of the field elementsm
- parameter of the Jacobi elliptic functionpublic static FieldJacobiElliptic<Complex> build(Complex m)
m
- parameter of the Jacobi elliptic functionpublic static <T extends CalculusFieldElement<T>> FieldJacobiElliptic<FieldComplex<T>> build(FieldComplex<T> m)
T
- type of the field elementsm
- parameter of the Jacobi elliptic functionCopyright © 2016-2021 CS GROUP. All rights reserved.