| Package | Description | 
|---|---|
| org.hipparchus | 
 Common classes used throughout the Hipparchus library. 
 | 
| org.hipparchus.analysis.function | 
 
      The  
function package contains function objects that wrap the
      methods contained in Math, as well as common
      mathematical functions such as the gaussian and sinc functions. | 
| org.hipparchus.analysis.integration | 
 Numerical integration (quadrature) algorithms for univariate real functions. 
 | 
| org.hipparchus.analysis.interpolation | 
 Univariate real functions interpolation algorithms. 
 | 
| org.hipparchus.analysis.polynomials | 
 Univariate real polynomials implementations, seen as differentiable
     univariate real functions. 
 | 
| org.hipparchus.analysis.solvers | 
 Root finding algorithms, for univariate real functions. 
 | 
| org.hipparchus.clustering | 
 Clustering algorithms. 
 | 
| org.hipparchus.complex | 
 Complex number type and implementations of complex transcendental
 functions. 
 | 
| org.hipparchus.fraction | 
 Fraction number type and fraction number formatting. 
 | 
| org.hipparchus.linear | 
 Linear algebra support. 
 | 
| org.hipparchus.optim.nonlinear.scalar | 
 Algorithms for optimizing a scalar function. 
 | 
| org.hipparchus.random | 
 Random number and random data generators. 
 | 
| org.hipparchus.stat | 
 Data storage, manipulation and summary routines. 
 | 
| org.hipparchus.stat.descriptive | 
 Generic univariate and multivariate summary statistic objects. 
 | 
| org.hipparchus.stat.descriptive.moment | 
 Summary statistics based on moments. 
 | 
| org.hipparchus.stat.descriptive.rank | 
 Summary statistics based on ranks. 
 | 
| org.hipparchus.stat.descriptive.summary | 
 Other summary statistics. 
 | 
| org.hipparchus.stat.fitting | 
 Statistical methods for fitting distributions. 
 | 
| org.hipparchus.stat.inference | 
 Classes providing hypothesis testing. 
 | 
| org.hipparchus.util | 
 Convenience routines and common data structures used throughout the Hipparchus library. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
T | 
FieldElement.add(T a)
Compute this + a. 
 | 
T | 
FieldElement.divide(T a)
Compute this ÷ a. 
 | 
T | 
FieldElement.multiply(T a)
Compute this × a. 
 | 
T | 
FieldElement.subtract(T a)
Compute this - a. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double[] | 
HarmonicOscillator.Parametric.gradient(double x,
        double... param)
Computes the value of the gradient at  
x. | 
double[] | 
Logit.Parametric.gradient(double x,
        double... param)
Computes the value of the gradient at  
x. | 
double[] | 
Logistic.Parametric.gradient(double x,
        double... param)
Computes the value of the gradient at  
x. | 
double[] | 
Gaussian.Parametric.gradient(double x,
        double... param)
Computes the value of the gradient at  
x. | 
double[] | 
Sigmoid.Parametric.gradient(double x,
        double... param)
Computes the value of the gradient at  
x. | 
double | 
HarmonicOscillator.Parametric.value(double x,
     double... param)
Computes the value of the harmonic oscillator at  
x. | 
double | 
Logit.Parametric.value(double x,
     double... param)
Computes the value of the logit at  
x. | 
double | 
Logistic.Parametric.value(double x,
     double... param)
Computes the value of the sigmoid at  
x. | 
double | 
Gaussian.Parametric.value(double x,
     double... param)
Computes the value of the Gaussian at  
x. | 
double | 
Sigmoid.Parametric.value(double x,
     double... param)
Computes the value of the sigmoid at  
x. | 
| Constructor and Description | 
|---|
StepFunction(double[] x,
            double[] y)
Builds a step function from a list of arguments and the corresponding
 values. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
UnivariateIntegrator.integrate(int maxEval,
         UnivariateFunction f,
         double min,
         double max)
Integrate the function in the given interval. 
 | 
double | 
BaseAbstractUnivariateIntegrator.integrate(int maxEval,
         UnivariateFunction f,
         double lower,
         double upper)
Integrate the function in the given interval. 
 | 
protected void | 
BaseAbstractUnivariateIntegrator.setup(int maxEval,
     UnivariateFunction f,
     double lower,
     double upper)
Prepare for computation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
FieldHermiteInterpolator.addSamplePoint(T x,
              T[]... value)
Add a sample point. 
 | 
double[][] | 
HermiteInterpolator.derivatives(double x,
           int order)
Interpolate value and first derivatives at a specified abscissa. 
 | 
T[][] | 
FieldHermiteInterpolator.derivatives(T x,
           int order)
Interpolate value and first derivatives at a specified abscissa. 
 | 
MultivariateFunction | 
MultivariateInterpolator.interpolate(double[][] xval,
           double[] yval)
Computes an interpolating function for the data set. 
 | 
MultivariateFunction | 
MicrosphereProjectionInterpolator.interpolate(double[][] xval,
           double[] yval)
Computes an interpolating function for the data set. 
 | 
PiecewiseBicubicSplineInterpolatingFunction | 
PiecewiseBicubicSplineInterpolator.interpolate(double[] xval,
           double[] yval,
           double[][] fval)
Compute an interpolating function for the dataset. 
 | 
T[] | 
FieldHermiteInterpolator.value(T x)
Interpolate value at a specified abscissa. 
 | 
| Constructor and Description | 
|---|
PiecewiseBicubicSplineInterpolatingFunction(double[] x,
                                           double[] y,
                                           double[][] f)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected static double[] | 
PolynomialFunction.differentiate(double[] coefficients)
Returns the coefficients of the derivative of the polynomial with the given coefficients. 
 | 
protected static <T extends RealFieldElement<T>> | 
FieldPolynomialFunction.differentiate(T[] coefficients)
Returns the coefficients of the derivative of the polynomial with the given coefficients. 
 | 
protected static double | 
PolynomialFunction.evaluate(double[] coefficients,
        double argument)
Uses Horner's Method to evaluate the polynomial with the given coefficients at
 the argument. 
 | 
static double | 
PolynomialFunctionNewtonForm.evaluate(double[] a,
        double[] c,
        double z)
Evaluate the Newton polynomial using nested multiplication. 
 | 
protected static <T extends RealFieldElement<T>> | 
FieldPolynomialFunction.evaluate(T[] coefficients,
        T argument)
Uses Horner's Method to evaluate the polynomial with the given coefficients at
 the argument. 
 | 
DerivativeStructure | 
PolynomialFunction.value(DerivativeStructure t)
Simple mathematical function. 
 | 
<T extends RealFieldElement<T>> | 
PolynomialFunction.value(T t)
Compute the value of the function. 
 | 
protected static void | 
PolynomialFunctionNewtonForm.verifyInputArray(double[] a,
                double[] c)
Verifies that the input arrays are valid. 
 | 
| Constructor and Description | 
|---|
FieldPolynomialFunction(T[] c)
Construct a polynomial with the given coefficients. 
 | 
FieldPolynomialSplineFunction(T[] knots,
                             FieldPolynomialFunction<T>[] polynomials)
Construct a polynomial spline function with the given segment delimiters
 and interpolating polynomials. 
 | 
PolynomialFunction(double[] c)
Construct a polynomial with the given coefficients. 
 | 
PolynomialFunctionNewtonForm(double[] a,
                            double[] c)
Construct a Newton polynomial with the given a[] and c[]. 
 | 
PolynomialSplineFunction(double[] knots,
                        PolynomialFunction[] polynomials)
Construct a polynomial spline function with the given segment delimiters
 and interpolating polynomials. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <T extends RealFieldElement<T>> | 
UnivariateSolverUtils.bracket(RealFieldUnivariateFunction<T> function,
       T initial,
       T lowerBound,
       T upperBound)
This method simply calls  
bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
 with q and r set to 1.0 and maximumIterations set to Integer.MAX_VALUE. | 
static <T extends RealFieldElement<T>> | 
UnivariateSolverUtils.bracket(RealFieldUnivariateFunction<T> function,
       T initial,
       T lowerBound,
       T upperBound,
       int maximumIterations)
This method simply calls  
bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
 with q and r set to 1.0. | 
static double[] | 
UnivariateSolverUtils.bracket(UnivariateFunction function,
       double initial,
       double lowerBound,
       double upperBound)
This method simply calls  
bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
 with q and r set to 1.0 and maximumIterations set to Integer.MAX_VALUE. | 
static double[] | 
UnivariateSolverUtils.bracket(UnivariateFunction function,
       double initial,
       double lowerBound,
       double upperBound,
       int maximumIterations)
This method simply calls  
bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
 with q and r set to 1.0. | 
static boolean | 
UnivariateSolverUtils.isBracketing(UnivariateFunction function,
            double lower,
            double upper)
Check whether the interval bounds bracket a root. 
 | 
protected void | 
BaseAbstractUnivariateSolver.setup(int maxEval,
     F f,
     double min,
     double max,
     double startValue)
Prepare for computation. 
 | 
T | 
FieldBracketingNthOrderBrentSolver.solve(int maxEval,
     RealFieldUnivariateFunction<T> f,
     T min,
     T max,
     AllowedSolution allowedSolution)
Solve for a zero in the given interval. 
 | 
T | 
FieldBracketingNthOrderBrentSolver.solve(int maxEval,
     RealFieldUnivariateFunction<T> f,
     T min,
     T max,
     T startValue,
     AllowedSolution allowedSolution)
Solve for a zero in the given interval, start at  
startValue. | 
static double | 
UnivariateSolverUtils.solve(UnivariateFunction function,
     double x0,
     double x1)
Convenience method to find a zero of a univariate real function. 
 | 
static double | 
UnivariateSolverUtils.solve(UnivariateFunction function,
     double x0,
     double x1,
     double absoluteAccuracy)
Convenience method to find a zero of a univariate real function. 
 | 
Complex[] | 
LaguerreSolver.solveAllComplex(double[] coefficients,
               double initial)
Find all complex roots for the polynomial with the given
 coefficients, starting from the given initial value. 
 | 
Complex | 
LaguerreSolver.solveComplex(double[] coefficients,
            double initial)
Find a complex root for the polynomial with the given coefficients,
 starting from the given initial value. 
 | 
protected void | 
BaseAbstractUnivariateSolver.verifyBracketing(double lower,
                double upper)
Check that the endpoints specify an interval and the function takes
 opposite signs at the endpoints. 
 | 
static void | 
UnivariateSolverUtils.verifyBracketing(UnivariateFunction function,
                double lower,
                double upper)
Check that the endpoints specify an interval and the end points
 bracket a root. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
List<Cluster<T>> | 
DBSCANClusterer.cluster(Collection<T> points)
Performs DBSCAN cluster analysis. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Complex | 
Complex.add(Complex addend)
Returns a  
Complex whose value is
 (this + addend). | 
Complex | 
Complex.divide(Complex divisor)
Returns a  
Complex whose value is
 (this / divisor). | 
static ComplexFormat | 
ComplexFormat.getComplexFormat(String imaginaryCharacter,
                Locale locale)
Returns the default complex format for the given locale. 
 | 
static ComplexFormat | 
ComplexFormat.getInstance(String imaginaryCharacter,
           Locale locale)
Deprecated. 
 
as of 1.4, replaced by  
ComplexFormat.getComplexFormat(String, Locale) | 
Complex | 
Complex.multiply(Complex factor)
Returns a  
Complex whose value is this * factor. | 
Complex | 
Complex.pow(Complex x)
Returns of value of this complex number raised to the power of  
x. | 
Complex | 
Complex.subtract(Complex subtrahend)
Returns a  
Complex whose value is
 (this - subtrahend). | 
| Constructor and Description | 
|---|
ComplexFormat(NumberFormat format)
Create an instance with a custom number format for both real and
 imaginary parts. 
 | 
ComplexFormat(NumberFormat realFormat,
             NumberFormat imaginaryFormat)
Create an instance with a custom number format for the real part and a
 custom number format for the imaginary part. 
 | 
ComplexFormat(String imaginaryCharacter)
Create an instance with a custom imaginary character, and the default
 number format for both real and imaginary parts. 
 | 
ComplexFormat(String imaginaryCharacter,
             NumberFormat format)
Create an instance with a custom imaginary character, and a custom number
 format for both real and imaginary parts. 
 | 
ComplexFormat(String imaginaryCharacter,
             NumberFormat realFormat,
             NumberFormat imaginaryFormat)
Create an instance with a custom imaginary character, a custom number
 format for the real part, and a custom number format for the imaginary
 part. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
BigFraction | 
BigFraction.add(BigInteger bg)
 Adds the value of this fraction to the passed  
BigInteger,
 returning the result in reduced form. | 
| Modifier and Type | Method and Description | 
|---|---|
FieldVector<T> | 
SparseFieldVector.append(T d)
Construct a vector by appending a T to this vector. 
 | 
protected static void | 
PreconditionedIterativeLinearSolver.checkParameters(RealLinearOperator a,
               RealLinearOperator m,
               RealVector b,
               RealVector x0)
Performs all dimension checks on the parameters of
  
solve
 and
 solveInPlace,
 and throws an exception if one of the checks fails. | 
protected static void | 
IterativeLinearSolver.checkParameters(RealLinearOperator a,
               RealVector b,
               RealVector x0)
Performs all dimension checks on the parameters of
  
solve and
 solveInPlace,
 and throws an exception if one of the checks fails. | 
static void | 
MatrixUtils.checkSubMatrixIndex(AnyMatrix m,
                   int[] selectedRows,
                   int[] selectedColumns)
Check if submatrix ranges indices are valid. 
 | 
protected void | 
AbstractFieldMatrix.checkSubMatrixIndex(int[] selectedRows,
                   int[] selectedColumns)
Check if submatrix ranges indices are valid. 
 | 
void | 
RealMatrix.copySubMatrix(int[] selectedRows,
             int[] selectedColumns,
             double[][] destination)
Copy a submatrix. 
 | 
void | 
AbstractRealMatrix.copySubMatrix(int[] selectedRows,
             int[] selectedColumns,
             double[][] destination)
Copy a submatrix. 
 | 
void | 
FieldMatrix.copySubMatrix(int[] selectedRows,
             int[] selectedColumns,
             T[][] destination)
Copy a submatrix. 
 | 
void | 
AbstractFieldMatrix.copySubMatrix(int[] selectedRows,
             int[] selectedColumns,
             T[][] destination)
Copy a submatrix. 
 | 
static <T extends FieldElement<T>> | 
MatrixUtils.createColumnFieldMatrix(T[] columnData)
Creates a column  
FieldMatrix using the data from the input
 array. | 
static RealMatrix | 
MatrixUtils.createColumnRealMatrix(double[] columnData)
Creates a column  
RealMatrix using the data from the input
 array. | 
static <T extends FieldElement<T>> | 
MatrixUtils.createFieldMatrix(T[][] data)
Returns a  
FieldMatrix whose entries are the the values in the
 the input array. | 
static <T extends FieldElement<T>> | 
MatrixUtils.createFieldVector(T[] data)
Creates a  
FieldVector using the data from the input array. | 
static RealMatrix | 
MatrixUtils.createRealMatrix(double[][] data)
Returns a  
RealMatrix whose entries are the the values in the
 the input array. | 
static RealVector | 
MatrixUtils.createRealVector(double[] data)
Creates a  
RealVector using the data from the input array. | 
static <T extends FieldElement<T>> | 
MatrixUtils.createRowFieldMatrix(T[] rowData)
Create a row  
FieldMatrix using the data from the input
 array. | 
static RealMatrix | 
MatrixUtils.createRowRealMatrix(double[] rowData)
Create a row  
RealMatrix using the data from the input
 array. | 
protected static <T extends FieldElement<T>> | 
AbstractFieldMatrix.extractField(T[][] d)
Get the elements type from an array. 
 | 
RealMatrix | 
RealMatrix.getSubMatrix(int[] selectedRows,
            int[] selectedColumns)
Gets a submatrix. 
 | 
FieldMatrix<T> | 
FieldMatrix.getSubMatrix(int[] selectedRows,
            int[] selectedColumns)
Get a submatrix. 
 | 
RealMatrix | 
AbstractRealMatrix.getSubMatrix(int[] selectedRows,
            int[] selectedColumns)
Gets a submatrix. 
 | 
FieldMatrix<T> | 
AbstractFieldMatrix.getSubMatrix(int[] selectedRows,
            int[] selectedColumns)
Get a submatrix. 
 | 
static RealMatrix | 
MatrixUtils.inverse(RealMatrix matrix)
Computes the inverse of the given matrix. 
 | 
static RealMatrix | 
MatrixUtils.inverse(RealMatrix matrix,
       double threshold)
Computes the inverse of the given matrix. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapAdd(T d)
Map an addition operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapAdd(T d)
Map an addition operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapAdd(T d)
Map an addition operation to each entry. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapAddToSelf(T d)
Map an addition operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapAddToSelf(T d)
Map an addition operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapAddToSelf(T d)
Map an addition operation to each entry. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapDivide(T d)
Map a division operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapDivide(T d)
Map a division operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapDivide(T d)
Map a division operation to each entry. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapDivideToSelf(T d)
Map a division operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapDivideToSelf(T d)
Map a division operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapDivideToSelf(T d)
Map a division operation to each entry. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapMultiply(T d)
Map a multiplication operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapMultiply(T d)
Map a multiplication operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapMultiply(T d)
Map a multiplication operation to each entry. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapMultiplyToSelf(T d)
Map a multiplication operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapMultiplyToSelf(T d)
Map a multiplication operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapMultiplyToSelf(T d)
Map a multiplication operation to each entry. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapSubtract(T d)
Map a subtraction operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapSubtract(T d)
Map a subtraction operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapSubtract(T d)
Map a subtraction operation to each entry. 
 | 
FieldVector<T> | 
ArrayFieldVector.mapSubtractToSelf(T d)
Map a subtraction operation to each entry. 
 | 
FieldVector<T> | 
SparseFieldVector.mapSubtractToSelf(T d)
Map a subtraction operation to each entry. 
 | 
FieldVector<T> | 
FieldVector.mapSubtractToSelf(T d)
Map a subtraction operation to each entry. 
 | 
void | 
SparseFieldVector.setEntry(int index,
        T value)
Set a single element. 
 | 
void | 
RealMatrix.setSubMatrix(double[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
row, column using data in the
 input subMatrix array. | 
void | 
Array2DRowRealMatrix.setSubMatrix(double[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
row, column using data in the
 input subMatrix array. | 
void | 
AbstractRealMatrix.setSubMatrix(double[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
row, column using data in the
 input subMatrix array. | 
void | 
BlockRealMatrix.setSubMatrix(double[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
row, column using data in the
 input subMatrix array. | 
void | 
BlockFieldMatrix.setSubMatrix(T[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
(row, column) using data in the
 input subMatrix array. | 
void | 
FieldMatrix.setSubMatrix(T[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
(row, column) using data in the
 input subMatrix array. | 
void | 
Array2DRowFieldMatrix.setSubMatrix(T[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
(row, column) using data in the
 input subMatrix array. | 
void | 
AbstractFieldMatrix.setSubMatrix(T[][] subMatrix,
            int row,
            int column)
Replace the submatrix starting at  
(row, column) using data in the
 input subMatrix array. | 
RealVector | 
SymmLQ.solve(RealLinearOperator a,
     RealLinearOperator m,
     RealVector b)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
PreconditionedIterativeLinearSolver.solve(RealLinearOperator a,
     RealLinearOperator m,
     RealVector b)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
SymmLQ.solve(RealLinearOperator a,
     RealLinearOperator m,
     RealVector b,
     boolean goodb,
     double shift)
Returns an estimate of the solution to the linear system (A - shift
 · I) · x = b. 
 | 
RealVector | 
SymmLQ.solve(RealLinearOperator a,
     RealLinearOperator m,
     RealVector b,
     RealVector x)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
PreconditionedIterativeLinearSolver.solve(RealLinearOperator a,
     RealLinearOperator m,
     RealVector b,
     RealVector x0)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
SymmLQ.solve(RealLinearOperator a,
     RealVector b)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
IterativeLinearSolver.solve(RealLinearOperator a,
     RealVector b)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
PreconditionedIterativeLinearSolver.solve(RealLinearOperator a,
     RealVector b)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
SymmLQ.solve(RealLinearOperator a,
     RealVector b,
     boolean goodb,
     double shift)
Returns the solution to the system (A - shift · I) · x = b. 
 | 
RealVector | 
SymmLQ.solve(RealLinearOperator a,
     RealVector b,
     RealVector x)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
IterativeLinearSolver.solve(RealLinearOperator a,
     RealVector b,
     RealVector x0)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
PreconditionedIterativeLinearSolver.solve(RealLinearOperator a,
     RealVector b,
     RealVector x0)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
SymmLQ.solveInPlace(RealLinearOperator a,
            RealLinearOperator m,
            RealVector b,
            RealVector x)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
abstract RealVector | 
PreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a,
            RealLinearOperator m,
            RealVector b,
            RealVector x0)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
ConjugateGradient.solveInPlace(RealLinearOperator a,
            RealLinearOperator m,
            RealVector b,
            RealVector x0)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
SymmLQ.solveInPlace(RealLinearOperator a,
            RealLinearOperator m,
            RealVector b,
            RealVector x,
            boolean goodb,
            double shift)
Returns an estimate of the solution to the linear system (A - shift
 · I) · x = b. 
 | 
RealVector | 
SymmLQ.solveInPlace(RealLinearOperator a,
            RealVector b,
            RealVector x)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
abstract RealVector | 
IterativeLinearSolver.solveInPlace(RealLinearOperator a,
            RealVector b,
            RealVector x0)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
RealVector | 
PreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a,
            RealVector b,
            RealVector x0)
Returns an estimate of the solution to the linear system A · x =
 b. 
 | 
| Constructor and Description | 
|---|
Array2DRowFieldMatrix(Field<T> field,
                     T[][] d)
Create a new  
FieldMatrix<T> using the input array as the underlying
 data array. | 
Array2DRowFieldMatrix(Field<T> field,
                     T[][] d,
                     boolean copyArray)
Create a new  
FieldMatrix<T> using the input array as the underlying
 data array. | 
Array2DRowFieldMatrix(T[][] d)
Create a new  
FieldMatrix<T> using the input array as the underlying
 data array. | 
Array2DRowFieldMatrix(T[][] d,
                     boolean copyArray)
Create a new  
FieldMatrix<T> using the input array as the underlying
 data array. | 
Array2DRowRealMatrix(double[][] d)
Create a new  
RealMatrix using the input array as the underlying
 data array. | 
Array2DRowRealMatrix(double[][] d,
                    boolean copyArray)
Create a new RealMatrix using the input array as the underlying
 data array. 
 | 
ArrayFieldVector(ArrayFieldVector<T> v)
Construct a vector from another vector, using a deep copy. 
 | 
ArrayFieldVector(ArrayFieldVector<T> v,
                boolean deep)
Construct a vector from another vector. 
 | 
ArrayFieldVector(Field<T> field,
                T[] d)
Construct a vector from an array, copying the input array. 
 | 
ArrayFieldVector(Field<T> field,
                T[] d,
                boolean copyArray)
Create a new ArrayFieldVector using the input array as the underlying
 data array. 
 | 
ArrayFieldVector(Field<T> field,
                T[] d,
                int pos,
                int size)
Construct a vector from part of a array. 
 | 
ArrayFieldVector(Field<T> field,
                T[] v1,
                T[] v2)
Construct a vector by appending one vector to another vector. 
 | 
ArrayFieldVector(FieldVector<T> v)
Construct a vector from another vector, using a deep copy. 
 | 
ArrayFieldVector(FieldVector<T> v1,
                FieldVector<T> v2)
Construct a vector by appending one vector to another vector. 
 | 
ArrayFieldVector(FieldVector<T> v1,
                T[] v2)
Construct a vector by appending one vector to another vector. 
 | 
ArrayFieldVector(T[] d)
Construct a vector from an array, copying the input array. 
 | 
ArrayFieldVector(T[] d,
                boolean copyArray)
Create a new ArrayFieldVector using the input array as the underlying
 data array. 
 | 
ArrayFieldVector(T[] v1,
                FieldVector<T> v2)
Construct a vector by appending one vector to another vector. 
 | 
ArrayFieldVector(T[] d,
                int pos,
                int size)
Construct a vector from part of a array. 
 | 
ArrayFieldVector(T[] v1,
                T[] v2)
Construct a vector by appending one vector to another vector. 
 | 
ArrayRealVector(ArrayRealVector v)
Construct a vector from another vector, using a deep copy. 
 | 
ArrayRealVector(double[] d,
               boolean copyArray)
Create a new ArrayRealVector using the input array as the underlying
 data array. 
 | 
ArrayRealVector(double[] d,
               int pos,
               int size)
Construct a vector from part of a array. 
 | 
ArrayRealVector(Double[] d,
               int pos,
               int size)
Construct a vector from part of an array. 
 | 
ArrayRealVector(RealVector v)
Construct a vector from another vector, using a deep copy. 
 | 
ConjugateGradient(IterationManager manager,
                 double delta,
                 boolean check)
Creates a new instance of this class, with default
 stopping criterion and custom iteration manager. 
 | 
DiagonalMatrix(double[] d,
              boolean copyArray)
Creates a matrix using the input array as the underlying data. 
 | 
IterativeLinearSolver(IterationManager manager)
Creates a new instance of this class, with custom iteration manager. 
 | 
PreconditionedIterativeLinearSolver(IterationManager manager)
Creates a new instance of this class, with custom iteration manager. 
 | 
SparseFieldVector(Field<T> field,
                 T[] values)
Create from a Field array. 
 | 
| Constructor and Description | 
|---|
MultiStartMultivariateOptimizer(MultivariateOptimizer optimizer,
                               int starts,
                               RandomVectorGenerator generator)
Create a multi-start optimizer from a single-start optimizer. 
 | 
| Constructor and Description | 
|---|
HaltonSequenceGenerator(int dimension,
                       int[] bases,
                       int[] weights)
Construct a new Halton sequence generator with the given base numbers and weights for each dimension. 
 | 
StableRandomGenerator(RandomGenerator generator,
                     double alpha,
                     double beta)
Create a new generator. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
Frequency.merge(Collection<? extends Frequency<? extends T>> others)
Merge a  
Collection of Frequency objects into this instance. | 
void | 
Frequency.merge(Frequency<? extends T> other)
Merge another Frequency object's counts into this instance. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
AggregatableStatistic.aggregate(T other)
Aggregates the provided instance into this instance. 
 | 
| Constructor and Description | 
|---|
GeometricMean(GeometricMean original)
Copy constructor, creates a new  
GeometricMean identical
 to the original. | 
Kurtosis(Kurtosis original)
Copy constructor, creates a new  
Kurtosis identical
 to the original. | 
Mean(Mean original)
Copy constructor, creates a new  
Mean identical
 to the original. | 
SecondMoment(SecondMoment original)
Copy constructor, creates a new  
SecondMoment identical
 to the original. | 
SemiVariance(SemiVariance original)
Copy constructor, creates a new  
SemiVariance identical
 to the original. | 
Skewness(Skewness original)
Copy constructor, creates a new  
Skewness identical
 to the original. | 
StandardDeviation(StandardDeviation original)
Copy constructor, creates a new  
StandardDeviation identical
 to the original. | 
Variance(Variance original)
Copy constructor, creates a new  
Variance identical
 to the original. | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
RandomPercentile.aggregate(RandomPercentile other)
Aggregates the provided instance into this instance. 
 | 
| Constructor and Description | 
|---|
Max(Max original)
Copy constructor, creates a new  
Max identical
 to the original. | 
Min(Min original)
Copy constructor, creates a new  
Min identical
 to the original. | 
Percentile(Percentile original)
Copy constructor, creates a new  
Percentile identical
 to the original | 
| Constructor and Description | 
|---|
Product(Product original)
Copy constructor, creates a new  
Product identical
 to the original. | 
Sum(Sum original)
Copy constructor, creates a new  
Sum identical
 to the original. | 
SumOfLogs(SumOfLogs original)
Copy constructor, creates a new  
SumOfLogs identical
 to the original. | 
SumOfSquares(SumOfSquares original)
Copy constructor, creates a new  
SumOfSquares identical
 to the original. | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
EmpiricalDistribution.load(double[] in)
Computes the empirical distribution from the provided
 array of numbers. 
 | 
void | 
EmpiricalDistribution.load(File file)
Computes the empirical distribution from the input file. 
 | 
void | 
EmpiricalDistribution.load(URL url)
Computes the empirical distribution using data read from a URL. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
OneWayAnova.anovaFValue(Collection<double[]> categoryData)
Computes the ANOVA F-value for a collection of  
double[]
 arrays. | 
double | 
OneWayAnova.anovaPValue(Collection<double[]> categoryData)
Computes the ANOVA P-value for a collection of  
double[]
 arrays. | 
double | 
OneWayAnova.anovaPValue(Collection<StreamingStatistics> categoryData,
           boolean allowOneElementData)
Computes the ANOVA P-value for a collection of  
StreamingStatistics. | 
boolean | 
OneWayAnova.anovaTest(Collection<double[]> categoryData,
         double alpha)
Performs an ANOVA test, evaluating the null hypothesis that there
 is no difference among the means of the data categories. 
 | 
static double | 
InferenceTestUtils.chiSquare(long[][] counts)  | 
double | 
ChiSquareTest.chiSquare(long[][] counts)
Computes the Chi-Square statistic associated with a
 
 chi-square test of independence based on the input  
counts
 array, viewed as a two-way table. | 
static double | 
InferenceTestUtils.chiSquareTest(long[][] counts)  | 
double | 
ChiSquareTest.chiSquareTest(long[][] counts)
Returns the observed significance level, or 
 p-value, associated with a
 
 chi-square test of independence based on the input  
counts
 array, viewed as a two-way table. | 
static boolean | 
InferenceTestUtils.chiSquareTest(long[][] counts,
             double alpha)  | 
boolean | 
ChiSquareTest.chiSquareTest(long[][] counts,
             double alpha)
Performs a 
 chi-square test of independence evaluating the null hypothesis that the
 classifications represented by the counts in the columns of the input 2-way table
 are independent of the rows, with significance level  
alpha. | 
double | 
TTest.homoscedasticT(double[] sample1,
              double[] sample2)
Computes a 2-sample t statistic,  under the hypothesis of equal
 subpopulation variances. 
 | 
static double | 
InferenceTestUtils.homoscedasticT(double[] sample1,
              double[] sample2)  | 
double | 
TTest.homoscedasticT(StatisticalSummary sampleStats1,
              StatisticalSummary sampleStats2)
Computes a 2-sample t statistic, comparing the means of the datasets
 described by two  
StatisticalSummary instances, under the
 assumption of equal subpopulation variances. | 
static double | 
InferenceTestUtils.homoscedasticT(StatisticalSummary sampleStats1,
              StatisticalSummary sampleStats2)  | 
double | 
TTest.homoscedasticTTest(double[] sample1,
                  double[] sample2)
Returns the observed significance level, or
 p-value, associated with a two-sample, two-tailed t-test
 comparing the means of the input arrays, under the assumption that
 the two samples are drawn from subpopulations with equal variances. 
 | 
static double | 
InferenceTestUtils.homoscedasticTTest(double[] sample1,
                  double[] sample2)  | 
boolean | 
TTest.homoscedasticTTest(double[] sample1,
                  double[] sample2,
                  double alpha)
Performs a
 
 two-sided t-test evaluating the null hypothesis that  
sample1
 and sample2 are drawn from populations with the same mean,
 with significance level alpha,  assuming that the
 subpopulation variances are equal. | 
static boolean | 
InferenceTestUtils.homoscedasticTTest(double[] sample1,
                  double[] sample2,
                  double alpha)  | 
double | 
TTest.homoscedasticTTest(StatisticalSummary sampleStats1,
                  StatisticalSummary sampleStats2)
Returns the observed significance level, or
 p-value, associated with a two-sample, two-tailed t-test
 comparing the means of the datasets described by two StatisticalSummary
 instances, under the hypothesis of equal subpopulation variances. 
 | 
static double | 
InferenceTestUtils.homoscedasticTTest(StatisticalSummary sampleStats1,
                  StatisticalSummary sampleStats2)  | 
static double | 
InferenceTestUtils.kolmogorovSmirnovStatistic(double[] x,
                          double[] y)  | 
static double | 
InferenceTestUtils.kolmogorovSmirnovStatistic(RealDistribution dist,
                          double[] data)  | 
static double | 
InferenceTestUtils.kolmogorovSmirnovTest(double[] x,
                     double[] y)  | 
static double | 
InferenceTestUtils.kolmogorovSmirnovTest(double[] x,
                     double[] y,
                     boolean strict)  | 
static double | 
InferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist,
                     double[] data)  | 
static double | 
InferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist,
                     double[] data,
                     boolean strict)  | 
static boolean | 
InferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist,
                     double[] data,
                     double alpha)  | 
double | 
MannWhitneyUTest.mannWhitneyU(double[] x,
            double[] y)
Computes the
 
 Mann-Whitney U statistic comparing means for two independent samples
 possibly of different lengths. 
 | 
double | 
MannWhitneyUTest.mannWhitneyUTest(double[] x,
                double[] y)
Returns the asymptotic observed significance level, or
 
 p-value, associated with a Mann-Whitney U
 Test comparing means for two independent samples. 
 | 
double | 
MannWhitneyUTest.mannWhitneyUTest(double[] x,
                double[] y,
                boolean exact)
Returns the asymptotic observed significance level, or
 
 p-value, associated with a Mann-Whitney U
 Test comparing means for two independent samples. 
 | 
static double | 
InferenceTestUtils.oneWayAnovaFValue(Collection<double[]> categoryData)  | 
static double | 
InferenceTestUtils.oneWayAnovaPValue(Collection<double[]> categoryData)  | 
static boolean | 
InferenceTestUtils.oneWayAnovaTest(Collection<double[]> categoryData,
               double alpha)  | 
double | 
TTest.pairedT(double[] sample1,
       double[] sample2)
Computes a paired, 2-sample t-statistic based on the data in the input
 arrays. 
 | 
static double | 
InferenceTestUtils.pairedT(double[] sample1,
       double[] sample2)  | 
double | 
TTest.pairedTTest(double[] sample1,
           double[] sample2)
Returns the observed significance level, or
  p-value, associated with a paired, two-sample, two-tailed t-test
 based on the data in the input arrays. 
 | 
static double | 
InferenceTestUtils.pairedTTest(double[] sample1,
           double[] sample2)  | 
boolean | 
TTest.pairedTTest(double[] sample1,
           double[] sample2,
           double alpha)
Performs a paired t-test evaluating the null hypothesis that the
 mean of the paired differences between  
sample1 and
 sample2 is 0 in favor of the two-sided alternative that the
 mean paired difference is not equal to 0, with significance level
 alpha. | 
static boolean | 
InferenceTestUtils.pairedTTest(double[] sample1,
           double[] sample2,
           double alpha)  | 
double | 
TTest.t(double[] sample1,
 double[] sample2)
Computes a 2-sample t statistic, without the hypothesis of equal
 subpopulation variances. 
 | 
static double | 
InferenceTestUtils.t(double[] sample1,
 double[] sample2)  | 
double | 
TTest.t(double mu,
 double[] observed)
Computes a 
 t statistic  given observed values and a comparison constant. 
 | 
static double | 
InferenceTestUtils.t(double mu,
 double[] observed)  | 
double | 
TTest.t(double mu,
 StatisticalSummary sampleStats)
 | 
static double | 
InferenceTestUtils.t(double mu,
 StatisticalSummary sampleStats)  | 
double | 
TTest.t(StatisticalSummary sampleStats1,
 StatisticalSummary sampleStats2)
Computes a 2-sample t statistic , comparing the means of the datasets
 described by two  
StatisticalSummary instances, without the
 assumption of equal subpopulation variances. | 
static double | 
InferenceTestUtils.t(StatisticalSummary sampleStats1,
 StatisticalSummary sampleStats2)  | 
double | 
TTest.tTest(double[] sample1,
     double[] sample2)
Returns the observed significance level, or
 p-value, associated with a two-sample, two-tailed t-test
 comparing the means of the input arrays. 
 | 
static double | 
InferenceTestUtils.tTest(double[] sample1,
     double[] sample2)  | 
boolean | 
TTest.tTest(double[] sample1,
     double[] sample2,
     double alpha)
Performs a
 
 two-sided t-test evaluating the null hypothesis that  
sample1
 and sample2 are drawn from populations with the same mean,
 with significance level alpha. | 
static boolean | 
InferenceTestUtils.tTest(double[] sample1,
     double[] sample2,
     double alpha)  | 
double | 
TTest.tTest(double mu,
     double[] sample)
Returns the observed significance level, or
 p-value, associated with a one-sample, two-tailed t-test
 comparing the mean of the input array with the constant  
mu. | 
static double | 
InferenceTestUtils.tTest(double mu,
     double[] sample)  | 
boolean | 
TTest.tTest(double mu,
     double[] sample,
     double alpha)
Performs a 
 two-sided t-test evaluating the null hypothesis that the mean of the population from
 which  
sample is drawn equals mu. | 
static boolean | 
InferenceTestUtils.tTest(double mu,
     double[] sample,
     double alpha)  | 
double | 
TTest.tTest(double mu,
     StatisticalSummary sampleStats)
Returns the observed significance level, or
 p-value, associated with a one-sample, two-tailed t-test
 comparing the mean of the dataset described by  
sampleStats
 with the constant mu. | 
static double | 
InferenceTestUtils.tTest(double mu,
     StatisticalSummary sampleStats)  | 
boolean | 
TTest.tTest(double mu,
     StatisticalSummary sampleStats,
     double alpha)
Performs a 
 two-sided t-test evaluating the null hypothesis that the mean of the
 population from which the dataset described by  
stats is
 drawn equals mu. | 
static boolean | 
InferenceTestUtils.tTest(double mu,
     StatisticalSummary sampleStats,
     double alpha)  | 
double | 
TTest.tTest(StatisticalSummary sampleStats1,
     StatisticalSummary sampleStats2)
Returns the observed significance level, or
 p-value, associated with a two-sample, two-tailed t-test
 comparing the means of the datasets described by two StatisticalSummary
 instances. 
 | 
static double | 
InferenceTestUtils.tTest(StatisticalSummary sampleStats1,
     StatisticalSummary sampleStats2)  | 
boolean | 
TTest.tTest(StatisticalSummary sampleStats1,
     StatisticalSummary sampleStats2,
     double alpha)
Performs a
 
 two-sided t-test evaluating the null hypothesis that
  
sampleStats1 and sampleStats2 describe
 datasets drawn from populations with the same mean, with significance
 level alpha. | 
static boolean | 
InferenceTestUtils.tTest(StatisticalSummary sampleStats1,
     StatisticalSummary sampleStats2,
     double alpha)  | 
double | 
WilcoxonSignedRankTest.wilcoxonSignedRank(double[] x,
                  double[] y)
Computes the
 
 Wilcoxon signed ranked statistic comparing means for two related
 samples or repeated measurements on a single sample. 
 | 
double | 
WilcoxonSignedRankTest.wilcoxonSignedRankTest(double[] x,
                      double[] y,
                      boolean exactPValue)
Returns the observed significance level, or
 
 p-value, associated with a
 
 Wilcoxon signed ranked statistic comparing mean for two related
 samples or repeated measurements on a single sample. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static void | 
MathUtils.checkNotNull(Object o)
Checks that an object is not null. 
 | 
static void | 
MathUtils.checkNotNull(Object o,
            Localizable pattern,
            Object... args)
Checks that an object is not null. 
 | 
static void | 
MathArrays.checkRectangular(long[][] in)
Throws MathIllegalArgumentException if the input array is not rectangular. 
 | 
static double[] | 
MathArrays.convolve(double[] x,
        double[] h)
Calculates the 
 convolution between two sequences. 
 | 
static void | 
MathArrays.sortInPlace(double[] x,
           double[]... yList)
Sort an array in ascending order in place and perform the same reordering
 of entries on other arrays. 
 | 
static void | 
MathArrays.sortInPlace(double[] x,
           MathArrays.OrderDirection dir,
           double[]... yList)
Sort an array in place and perform the same reordering of entries on
 other arrays. 
 | 
| Constructor and Description | 
|---|
Incrementor(int max,
           Incrementor.MaxCountExceededCallback cb)
Creates an Incrementor. 
 | 
KthSelector(PivotingStrategy pivotingStrategy)
Constructor with specified pivoting strategy 
 | 
ResizableDoubleArray(ResizableDoubleArray original)
Copy constructor. 
 | 
Copyright © 2016–2020 Hipparchus.org. All rights reserved.