public class Complex extends Object implements CalculusFieldElement<Complex>, Serializable
Implementations of arithmetic operations handle NaN
and
infinite values according to the rules for Double
, i.e.
equals(java.lang.Object)
is an equivalence relation for all instances that have
a NaN
in either real or imaginary part, e.g. the following are
considered equal:
1 + NaNi
NaN + i
NaN + NaNi
Note that this contradicts the IEEE-754 standard for floating
point numbers (according to which the test x == x
must fail if
x
is NaN
). The method
equals for primitive double
in Precision
conforms with IEEE-754 while this class conforms with the standard behavior
for Java object types.
Modifier and Type | Field and Description |
---|---|
static Complex |
I
The square root of -1.
|
static Complex |
INF
A complex number representing "+INF + INFi"
|
static Complex |
MINUS_I
The square root of -1.
|
static Complex |
MINUS_ONE
A complex number representing "-1.0 + 0.0i".
|
static Complex |
NaN
A complex number representing "NaN + NaNi".
|
static Complex |
ONE
A complex number representing "1.0 + 0.0i".
|
static Complex |
ZERO
A complex number representing "0.0 + 0.0i".
|
DEG_TO_RAD, RAD_TO_DEG
Constructor and Description |
---|
Complex(double real)
Create a complex number given only the real part.
|
Complex(double real,
double imaginary)
Create a complex number given the real and imaginary parts.
|
Modifier and Type | Method and Description |
---|---|
double |
abs()
Return the absolute value of this complex number.
|
Complex |
acos()
Compute the
inverse cosine of this complex number.
|
Complex |
acosh()
Inverse hyperbolic cosine operation.
|
Complex |
add(Complex addend)
Returns a
Complex whose value is
(this + addend) . |
Complex |
add(double addend)
Returns a
Complex whose value is (this + addend) ,
with addend interpreted as a real number. |
Complex |
asin()
Compute the
inverse sine of this complex number.
|
Complex |
asinh()
Inverse hyperbolic sine operation.
|
Complex |
atan()
Compute the
inverse tangent of this complex number.
|
Complex |
atan2(Complex x)
Two arguments arc tangent operation.
|
Complex |
atanh()
Inverse hyperbolic tangent operation.
|
Complex |
cbrt()
Cubic root.
|
Complex |
ceil()
Get the smallest whole number larger than instance.
|
Complex |
conjugate()
Returns the conjugate of this complex number.
|
Complex |
copySign(Complex z)
Returns the instance with the sign of the argument.
|
Complex |
copySign(double r)
Returns the instance with the sign of the argument.
|
Complex |
cos()
Compute the
cosine of this complex number.
|
Complex |
cosh()
Compute the
hyperbolic cosine of this complex number.
|
protected Complex |
createComplex(double realPart,
double imaginaryPart)
Create a complex number given the real and imaginary parts.
|
Complex |
divide(Complex divisor)
Returns a
Complex whose value is
(this / divisor) . |
Complex |
divide(double divisor)
Returns a
Complex whose value is (this / divisor) ,
with divisor interpreted as a real number. |
static boolean |
equals(Complex x,
Complex y)
Returns
true iff the values are equal as defined by
equals(x, y, 1) . |
static boolean |
equals(Complex x,
Complex y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no double value strictly between the arguments or the
difference between them is within the range of allowed error
(inclusive). |
static boolean |
equals(Complex x,
Complex y,
int maxUlps)
Test for the floating-point equality between Complex objects.
|
boolean |
equals(Object other)
Test for equality with another object.
|
static boolean |
equalsWithRelativeTolerance(Complex x,
Complex y,
double eps)
Returns
true if, both for the real part and for the imaginary
part, there is no double value strictly between the arguments or the
relative difference between them is smaller or equal to the given
tolerance. |
Complex |
exp()
Compute the
exponential function of this complex number.
|
Complex |
expm1()
Exponential minus 1.
|
Complex |
floor()
Get the largest whole number smaller than instance.
|
double |
getArgument()
Compute the argument of this complex number.
|
ComplexField |
getField()
Get the
Field to which the instance belongs. |
double |
getImaginary()
Access the imaginary part.
|
double |
getReal()
Access the real part.
|
int |
hashCode()
Get a hashCode for the complex number.
|
Complex |
hypot(Complex y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
boolean |
isInfinite()
Checks whether either the real or imaginary part of this complex number
takes an infinite value (either
Double.POSITIVE_INFINITY or
Double.NEGATIVE_INFINITY ) and neither part
is NaN . |
boolean |
isMathematicalInteger()
Check whether the instance is an integer (i.e.
|
boolean |
isNaN()
Checks whether either or both parts of this complex number is
NaN . |
boolean |
isReal()
Check whether the instance is real (i.e.
|
boolean |
isZero()
Check if an element is semantically equal to zero.
|
Complex |
linearCombination(Complex[] a,
Complex[] b)
Compute a linear combination.
|
Complex |
linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2)
Compute a linear combination.
|
Complex |
linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2,
Complex a3,
Complex b3)
Compute a linear combination.
|
Complex |
linearCombination(Complex a1,
Complex b1,
Complex a2,
Complex b2,
Complex a3,
Complex b3,
Complex a4,
Complex b4)
Compute a linear combination.
|
Complex |
linearCombination(double[] a,
Complex[] b)
Compute a linear combination.
|
Complex |
linearCombination(double a1,
Complex b1,
double a2,
Complex b2)
Compute a linear combination.
|
Complex |
linearCombination(double a1,
Complex b1,
double a2,
Complex b2,
double a3,
Complex b3)
Compute a linear combination.
|
Complex |
linearCombination(double a1,
Complex b1,
double a2,
Complex b2,
double a3,
Complex b3,
double a4,
Complex b4)
Compute a linear combination.
|
Complex |
log()
Compute the
natural logarithm of this complex number.
|
Complex |
log10()
Base 10 logarithm.
|
Complex |
log1p()
Shifted natural logarithm.
|
Complex |
multiply(Complex factor)
Returns a
Complex whose value is this * factor . |
Complex |
multiply(double factor)
Returns a
Complex whose value is this * factor , with factor
interpreted as a real number. |
Complex |
multiply(int factor)
Returns a
Complex whose value is this * factor , with factor
interpreted as a integer number. |
Complex |
negate()
Returns a
Complex whose value is (-this) . |
Complex |
newInstance(double realPart)
Create an instance corresponding to a constant real value.
|
Complex |
norm()
Return the norm of this complex number.
|
List<Complex> |
nthRoot(int n)
Computes the n-th roots of this complex number.
|
Complex |
pow(Complex x)
Returns of value of this complex number raised to the power of
x . |
Complex |
pow(double x)
Returns of value of this complex number raised to the power of
x . |
Complex |
pow(int n)
Integer power operation.
|
protected Object |
readResolve()
Resolve the transient fields in a deserialized Complex Object.
|
Complex |
reciprocal()
Returns the multiplicative inverse of
this element. |
Complex |
remainder(Complex a)
IEEE remainder operator.
|
Complex |
remainder(double a)
IEEE remainder operator.
|
Complex |
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
Complex |
rootN(int n)
Nth root.
|
Complex |
scalb(int n)
Multiply the instance by a power of 2.
|
Complex |
signum()
Compute the signum of the instance.
|
Complex |
sin()
Compute the
sine
of this complex number.
|
Complex |
sinh()
Compute the
hyperbolic sine of this complex number.
|
Complex |
sqrt()
Compute the
square root of this complex number.
|
Complex |
sqrt1z()
Compute the
square root of
1 - this2 for this complex
number. |
Complex |
subtract(Complex subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
Complex |
subtract(double subtrahend)
Returns a
Complex whose value is
(this - subtrahend) . |
Complex |
tan()
Compute the
tangent of this complex number.
|
Complex |
tanh()
Compute the
hyperbolic tangent of this complex number.
|
String |
toString() |
static Complex |
valueOf(double realPart)
Create a complex number given only the real part.
|
static Complex |
valueOf(double realPart,
double imaginaryPart)
Create a complex number given the real and imaginary parts.
|
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
getExponent, sinCos, toDegrees, toRadians
public static final Complex I
public static final Complex MINUS_I
public static final Complex NaN
public static final Complex INF
public static final Complex ONE
public static final Complex MINUS_ONE
public static final Complex ZERO
public Complex(double real)
real
- Real part.public Complex(double real, double imaginary)
real
- Real part.imaginary
- Imaginary part.public Complex norm()
NaN
if either real or imaginary part is NaN
and Double.POSITIVE_INFINITY
if neither part is NaN
,
but at least one part is infinite.public double abs()
NaN
if either real or imaginary part is NaN
and Double.POSITIVE_INFINITY
if neither part is NaN
,
but at least one part is infinite.public Complex add(Complex addend) throws NullArgumentException
Complex
whose value is
(this + addend)
.
Uses the definitional formula
(a + bi) + (c + di) = (a+c) + (b+d)i
this
or addend
has a NaN
value in
either part, NaN
is returned; otherwise Infinite
and NaN
values are returned in the parts of the result
according to the rules for Double
arithmetic.add
in interface FieldElement<Complex>
addend
- Value to be added to this Complex
.this + addend
.NullArgumentException
- if addend
is null
.public Complex add(double addend)
Complex
whose value is (this + addend)
,
with addend
interpreted as a real number.add
in interface CalculusFieldElement<Complex>
addend
- Value to be added to this Complex
.this + addend
.add(Complex)
public Complex conjugate()
a + bi
is a - bi
.
NaN
is returned if either the real or imaginary
part of this Complex number equals Double.NaN
.
If the imaginary part is infinite, and the real part is not
NaN
, the returned value has infinite imaginary part
of the opposite sign, e.g. the conjugate of
1 + POSITIVE_INFINITY i
is 1 - NEGATIVE_INFINITY i
.
public Complex divide(Complex divisor) throws NullArgumentException
Complex
whose value is
(this / divisor)
.
Implements the definitional formula
a + bi ac + bd + (bc - ad)i
----------- = -------------------------
c + di c2 + d2
but uses
prescaling of operands to limit the effects of overflows and
underflows in the computation.
Infinite
and NaN
values are handled according to the
following rules, applied in the order presented:
this
or divisor
has a NaN
value
in either part, NaN
is returned.
divisor
equals ZERO
, NaN
is returned.
this
and divisor
are both infinite,
NaN
is returned.
this
is finite (i.e., has no Infinite
or
NaN
parts) and divisor
is infinite (one or both parts
infinite), ZERO
is returned.
this
is infinite and divisor
is finite,
NaN
values are returned in the parts of the result if the
Double
rules applied to the definitional formula
force NaN
results.
divide
in interface FieldElement<Complex>
divisor
- Value by which this Complex
is to be divided.this / divisor
.NullArgumentException
- if divisor
is null
.public Complex divide(double divisor)
Complex
whose value is (this / divisor)
,
with divisor
interpreted as a real number.divide
in interface CalculusFieldElement<Complex>
divisor
- Value by which this Complex
is to be divided.this / divisor
.divide(Complex)
public Complex reciprocal()
this
element.reciprocal
in interface CalculusFieldElement<Complex>
reciprocal
in interface FieldElement<Complex>
this
.public boolean equals(Object other)
Double.NaN
, the two
Complex objects are considered to be equal.
The behavior is the same as for JDK's Double
:
NaN
values are considered to be equal,
i.e, if either (or both) real and imaginary parts of the complex
number are equal to Double.NaN
, the complex number is equal
to NaN
.
public static boolean equals(Complex x, Complex y, int maxUlps)
true
if both arguments are equal or within the
range of allowed error (inclusive).x
- First value (cannot be null
).y
- Second value (cannot be null
).maxUlps
- (maxUlps - 1)
is the number of floating point
values between the real (resp. imaginary) parts of x
and
y
.true
if there are fewer than maxUlps
floating
point values between the real (resp. imaginary) parts of x
and y
.Precision.equals(double,double,int)
public static boolean equals(Complex x, Complex y)
true
iff the values are equal as defined by
equals(x, y, 1)
.x
- First value (cannot be null
).y
- Second value (cannot be null
).true
if the values are equal.public static boolean equals(Complex x, Complex y, double eps)
true
if, both for the real part and for the imaginary
part, there is no double value strictly between the arguments or the
difference between them is within the range of allowed error
(inclusive). Returns false
if either of the arguments is NaN.x
- First value (cannot be null
).y
- Second value (cannot be null
).eps
- Amount of allowed absolute error.true
if the values are two adjacent floating point
numbers or they are within range of each other.Precision.equals(double,double,double)
public static boolean equalsWithRelativeTolerance(Complex x, Complex y, double eps)
true
if, both for the real part and for the imaginary
part, there is no double value strictly between the arguments or the
relative difference between them is smaller or equal to the given
tolerance. Returns false
if either of the arguments is NaN.x
- First value (cannot be null
).y
- Second value (cannot be null
).eps
- Amount of allowed relative error.true
if the values are two adjacent floating point
numbers or they are within range of each other.Precision.equalsWithRelativeTolerance(double,double,double)
public int hashCode()
Double.NaN
value in real or imaginary part produces
the same hash code 7
.public boolean isZero()
The default implementation simply calls equals(getField().getZero())
.
However, this may need to be overridden in some cases as due to
compatibility with hashCode()
some classes implements
equals(Object)
in such a way that -0.0 and +0.0 are different,
which may be a problem. It prevents for example identifying a diagonal
element is zero and should be avoided when doing partial pivoting in
LU decomposition.
This implementation considers +0.0 and -0.0 to be equal for both real and imaginary components.
isZero
in interface FieldElement<Complex>
public double getImaginary()
public double getReal()
getReal
in interface CalculusFieldElement<Complex>
public boolean isNaN()
NaN
.isNaN
in interface CalculusFieldElement<Complex>
NaN
; false otherwise.public boolean isReal()
public boolean isMathematicalInteger()
public boolean isInfinite()
Double.POSITIVE_INFINITY
or
Double.NEGATIVE_INFINITY
) and neither part
is NaN
.isInfinite
in interface CalculusFieldElement<Complex>
NaN
.public Complex multiply(Complex factor) throws NullArgumentException
Complex
whose value is this * factor
.
Implements preliminary checks for NaN
and infinity followed by
the definitional formula:
(a + bi)(c + di) = (ac - bd) + (ad + bc)i
NaN
if either this
or factor
has one or
more NaN
parts.
Returns INF
if neither this
nor factor
has one
or more NaN
parts and if either this
or factor
has one or more infinite parts (same result is returned regardless of
the sign of the components).
Returns finite values in components of the result per the definitional formula in all remaining cases.
multiply
in interface FieldElement<Complex>
factor
- value to be multiplied by this Complex
.this * factor
.NullArgumentException
- if factor
is null
.public Complex multiply(int factor)
Complex
whose value is this * factor
, with factor
interpreted as a integer number.multiply
in interface FieldElement<Complex>
factor
- value to be multiplied by this Complex
.this * factor
.multiply(Complex)
public Complex multiply(double factor)
Complex
whose value is this * factor
, with factor
interpreted as a real number.multiply
in interface CalculusFieldElement<Complex>
factor
- value to be multiplied by this Complex
.this * factor
.multiply(Complex)
public Complex negate()
Complex
whose value is (-this)
.
Returns NaN
if either real or imaginary
part of this Complex number is Double.NaN
.negate
in interface FieldElement<Complex>
-this
.public Complex subtract(Complex subtrahend) throws NullArgumentException
Complex
whose value is
(this - subtrahend)
.
Uses the definitional formula
(a + bi) - (c + di) = (a-c) + (b-d)i
this
or subtrahend
has a NaN]
value in either part,
NaN
is returned; otherwise infinite and NaN
values are
returned in the parts of the result according to the rules for
Double
arithmetic.subtract
in interface FieldElement<Complex>
subtrahend
- value to be subtracted from this Complex
.this - subtrahend
.NullArgumentException
- if subtrahend
is null
.public Complex subtract(double subtrahend)
Complex
whose value is
(this - subtrahend)
.subtract
in interface CalculusFieldElement<Complex>
subtrahend
- value to be subtracted from this Complex
.this - subtrahend
.subtract(Complex)
public Complex acos()
acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))
NaN
if either real or imaginary part of the
input argument is NaN
or infinite.acos
in interface CalculusFieldElement<Complex>
public Complex asin()
asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))
Returns NaN
if either real or imaginary part of the
input argument is NaN
or infinite.
asin
in interface CalculusFieldElement<Complex>
public Complex atan()
atan(z) = (i/2) log((i + z)/(i - z))
Returns NaN
if either real or imaginary part of the
input argument is NaN
or infinite.
atan
in interface CalculusFieldElement<Complex>
public Complex cos()
cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i
where the (real) functions on the right-hand side are
FastMath.sin(double)
, FastMath.cos(double)
,
FastMath.cosh(double)
and FastMath.sinh(double)
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
cos(1 ± INFINITY i) = 1 ∓ INFINITY i
cos(±INFINITY + i) = NaN + NaN i
cos(±INFINITY ± INFINITY i) = NaN + NaN i
cos
in interface CalculusFieldElement<Complex>
public Complex cosh()
cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
where the (real) functions on the right-hand side are
FastMath.sin(double)
, FastMath.cos(double)
,
FastMath.cosh(double)
and FastMath.sinh(double)
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Examples:
cosh(1 ± INFINITY i) = NaN + NaN i
cosh(±INFINITY + i) = INFINITY ± INFINITY i
cosh(±INFINITY ± INFINITY i) = NaN + NaN i
cosh
in interface CalculusFieldElement<Complex>
public Complex exp()
exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
where the (real) functions on the right-hand side are
FastMath.exp(double)
, FastMath.cos(double)
, and
FastMath.sin(double)
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Examples:
exp(1 ± INFINITY i) = NaN + NaN i
exp(INFINITY + i) = INFINITY + INFINITY i
exp(-INFINITY + i) = 0 + 0i
exp(±INFINITY ± INFINITY i) = NaN + NaN i
exp
in interface CalculusFieldElement<Complex>
ethis
.public Complex expm1()
expm1
in interface CalculusFieldElement<Complex>
public Complex log()
log(a + bi) = ln(|a + bi|) + arg(a + bi)i
where ln on the right hand side is FastMath.log(double)
,
|a + bi|
is the modulus, abs()
, and
arg(a + bi) =
FastMath.atan2(double, double)
(b, a).
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Examples:
log(1 ± INFINITY i) = INFINITY ± (π/2)i
log(INFINITY + i) = INFINITY + 0i
log(-INFINITY + i) = INFINITY + πi
log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i
log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i
log(0 + 0i) = -INFINITY + 0i
log
in interface CalculusFieldElement<Complex>
ln this
, the natural logarithm
of this
.public Complex log1p()
log1p
in interface CalculusFieldElement<Complex>
public Complex log10()
log10
in interface CalculusFieldElement<Complex>
public Complex pow(Complex x) throws NullArgumentException
x
.
If x
is a real number whose real part has an integer value, returns pow(int)
,
if both this
and x
are real and FastMath.pow(double, double)
with the corresponding real arguments would return a finite number (neither NaN
nor infinite), then returns the same value converted to Complex
,
with the same special cases.
In all other cases real cases, implements yx = exp(x·log(y)).
pow
in interface CalculusFieldElement<Complex>
x
- exponent to which this Complex
is to be raised. thisx
.NullArgumentException
- if x is null
.public Complex pow(double x)
x
.
If x
has an integer value, returns pow(int)
,
if this
is real and FastMath.pow(double, double)
with the corresponding real arguments would return a finite number (neither NaN
nor infinite), then returns the same value converted to Complex
,
with the same special cases.
In all other cases real cases, implements yx = exp(x·log(y)).
pow
in interface CalculusFieldElement<Complex>
x
- exponent to which this Complex
is to be raised. thisx
.public Complex pow(int n)
pow
in interface CalculusFieldElement<Complex>
n
- power to applypublic Complex sin()
sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
where the (real) functions on the right-hand side are
FastMath.sin(double)
, FastMath.cos(double)
,
FastMath.cosh(double)
and FastMath.sinh(double)
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Infinite values in real or imaginary parts of the input may result in
infinite or NaN
values returned in parts of the result.
Examples:
sin(1 ± INFINITY i) = 1 ± INFINITY i
sin(±INFINITY + i) = NaN + NaN i
sin(±INFINITY ± INFINITY i) = NaN + NaN i
sin
in interface CalculusFieldElement<Complex>
public Complex atan2(Complex x)
atan2
in interface CalculusFieldElement<Complex>
x
- second argument of the arc tangentpublic Complex acosh()
Branch cuts are on the real axis, below +1.
acosh
in interface CalculusFieldElement<Complex>
public Complex asinh()
Branch cuts are on the imaginary axis, above +i and below -i.
asinh
in interface CalculusFieldElement<Complex>
public Complex atanh()
Branch cuts are on the real axis, above +1 and below -1.
atanh
in interface CalculusFieldElement<Complex>
public Complex sinh()
sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
where the (real) functions on the right-hand side are
FastMath.sin(double)
, FastMath.cos(double)
,
FastMath.cosh(double)
and FastMath.sinh(double)
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples:
sinh(1 ± INFINITY i) = NaN + NaN i
sinh(±INFINITY + i) = ± INFINITY + INFINITY i
sinh(±INFINITY ± INFINITY i) = NaN + NaN i
sinh
in interface CalculusFieldElement<Complex>
this
.public Complex sqrt()
sqrt(a + bi)
:
t = sqrt((|a| + |a + bi|) / 2)
ifa ≥ 0
returnt + (b/2t)i
else return|b|/2t + sign(b)t i
|a| =
FastMath.abs(int)
(a)|a + bi| =
abs()
(a + bi)sign(b) =
copySign(1d, b)
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Examples:
sqrt(1 ± INFINITY i) = INFINITY + NaN i
sqrt(INFINITY + i) = INFINITY + 0i
sqrt(-INFINITY + i) = 0 + INFINITY i
sqrt(INFINITY ± INFINITY i) = INFINITY + NaN i
sqrt(-INFINITY ± INFINITY i) = NaN ± INFINITY i
sqrt
in interface CalculusFieldElement<Complex>
this
.public Complex sqrt1z()
1 - this2
for this complex
number.
Computes the result directly as
sqrt(ONE.subtract(z.multiply(z)))
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
1 - this2
.public Complex cbrt()
This implementation compute the principal cube root by using a branch cut along real negative axis.
cbrt
in interface CalculusFieldElement<Complex>
public Complex rootN(int n)
This implementation compute the principal nth root by using a branch cut along real negative axis.
rootN
in interface CalculusFieldElement<Complex>
n
- order of the rootpublic Complex tan()
tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
where the (real) functions on the right-hand side are
FastMath.sin(double)
, FastMath.cos(double)
, FastMath.cosh(double)
and
FastMath.sinh(double)
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Examples:
tan(a ± INFINITY i) = 0 ± i
tan(±INFINITY + bi) = NaN + NaN i
tan(±INFINITY ± INFINITY i) = NaN + NaN i
tan(±π/2 + 0 i) = ±INFINITY + NaN i
tan
in interface CalculusFieldElement<Complex>
this
.public Complex tanh()
tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
where the (real) functions on the right-hand side are
FastMath.sin(double)
, FastMath.cos(double)
, FastMath.cosh(double)
and
FastMath.sinh(double)
.
Returns NaN
if either real or imaginary part of the
input argument is NaN
.
Examples:
tanh(a ± INFINITY i) = NaN + NaN i
tanh(±INFINITY + bi) = ±1 + 0 i
tanh(±INFINITY ± INFINITY i) = NaN + NaN i
tanh(0 + (π/2)i) = NaN + INFINITY i
tanh
in interface CalculusFieldElement<Complex>
this
.public double getArgument()
If either real or imaginary part (or both) is NaN, NaN is returned.
Infinite parts are handled as Math.atan2
handles them,
essentially treating finite parts as zero in the presence of an
infinite coordinate and returning a multiple of pi/4 depending on
the signs of the infinite parts.
See the javadoc for Math.atan2
for full details.
this
.public List<Complex> nthRoot(int n) throws MathIllegalArgumentException
zk = abs1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
for k=0, 1, ..., n-1
, where abs
and phi
are respectively the modulus
and
argument
of this complex number.
If one or both parts of this complex number is NaN, a list with just
one element, NaN
is returned.
if neither part is NaN, but at least one part is infinite, the result
is a one-element list containing INF
.
n
- Degree of root.n
-th roots of this
.MathIllegalArgumentException
- if n <= 0
.protected Complex createComplex(double realPart, double imaginaryPart)
realPart
- Real part.imaginaryPart
- Imaginary part.valueOf(double, double)
public static Complex valueOf(double realPart, double imaginaryPart)
realPart
- Real part.imaginaryPart
- Imaginary part.public static Complex valueOf(double realPart)
realPart
- Real part.public Complex newInstance(double realPart)
The default implementation creates the instance by adding
the value to getField().getZero()
. This is not optimal
and does not work when called with a negative zero as the
sign of zero is lost with the addition. The default implementation
should therefore be overridden in concrete classes. The default
implementation will be removed at the next major version.
newInstance
in interface CalculusFieldElement<Complex>
realPart
- constant real valueprotected final Object readResolve()
createComplex(double, double)
to
deserialize properly.public ComplexField getField()
Field
to which the instance belongs.getField
in interface FieldElement<Complex>
Field
to which the instance belongspublic Complex scalb(int n)
scalb
in interface CalculusFieldElement<Complex>
n
- power of 2public Complex hypot(Complex y)
this
and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
hypot
in interface CalculusFieldElement<Complex>
y
- a valuepublic Complex linearCombination(Complex[] a, Complex[] b) throws MathIllegalArgumentException
linearCombination
in interface CalculusFieldElement<Complex>
a
- Factors.b
- Factors.Σi ai bi
.MathIllegalArgumentException
- if arrays dimensions don't matchpublic Complex linearCombination(double[] a, Complex[] b) throws MathIllegalArgumentException
linearCombination
in interface CalculusFieldElement<Complex>
a
- Factors.b
- Factors.Σi ai bi
.MathIllegalArgumentException
- if arrays dimensions don't matchpublic Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2)
linearCombination
in interface CalculusFieldElement<Complex>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second termCalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)
,
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2)
linearCombination
in interface CalculusFieldElement<Complex>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second termCalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)
,
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3)
linearCombination
in interface CalculusFieldElement<Complex>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third termCalculusFieldElement.linearCombination(Object, Object, Object, Object)
,
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3)
linearCombination
in interface CalculusFieldElement<Complex>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third termCalculusFieldElement.linearCombination(double, Object, double, Object)
,
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)
public Complex linearCombination(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4)
linearCombination
in interface CalculusFieldElement<Complex>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth termCalculusFieldElement.linearCombination(Object, Object, Object, Object)
,
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)
public Complex linearCombination(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4)
linearCombination
in interface CalculusFieldElement<Complex>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth termCalculusFieldElement.linearCombination(double, Object, double, Object)
,
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)
public Complex ceil()
ceil
in interface CalculusFieldElement<Complex>
public Complex floor()
floor
in interface CalculusFieldElement<Complex>
public Complex rint()
rint
in interface CalculusFieldElement<Complex>
public Complex remainder(double a)
for complex numbers, the integer n corresponding to this.subtract(remainder(a)).divide(a)
is a Wikipedia - Gaussian integer.
remainder
in interface CalculusFieldElement<Complex>
a
- right hand side parameter of the operatorpublic Complex remainder(Complex a)
for complex numbers, the integer n corresponding to this.subtract(remainder(a)).divide(a)
is a Wikipedia - Gaussian integer.
remainder
in interface CalculusFieldElement<Complex>
a
- right hand side parameter of the operatorpublic Complex signum()
signum
in interface CalculusFieldElement<Complex>
public Complex copySign(Complex z)
sign
argument is treated as positive.
The signs of real and imaginary parts are copied independently.
copySign
in interface CalculusFieldElement<Complex>
z
- the sign for the returned valuesign
argumentpublic Complex copySign(double r)
sign
argument is treated as positive.copySign
in interface CalculusFieldElement<Complex>
r
- the sign for the returned valuesign
argumentCopyright © 2016–2020 Hipparchus.org. All rights reserved.