public class LutherIntegrator extends RungeKuttaIntegrator
This method is described in H. A. Luther 1968 paper An explicit Sixth-Order Runge-Kutta Formula.
This method is an explicit Runge-Kutta method, its Butcher-array is the following one :
        0   |               0                     0                     0                     0                     0                     0
        1   |               1                     0                     0                     0                     0                     0
       1/2  |              3/8                   1/8                    0                     0                     0                     0
       2/3  |              8/27                  2/27                  8/27                   0                     0                     0
   (7-q)/14 | (  -21 +   9q)/392    (  -56 +   8q)/392    (  336 -  48q)/392    (  -63 +   3q)/392                  0                     0
   (7+q)/14 | (-1155 - 255q)/1960   ( -280 -  40q)/1960   (    0 - 320q)/1960   (   63 + 363q)/1960   ( 2352 + 392q)/1960                 0
        1   | (  330 + 105q)/180    (  120 +   0q)/180    ( -200 + 280q)/180    (  126 - 189q)/180    ( -686 - 126q)/180     ( 490 -  70q)/180
            |--------------------------------------------------------------------------------------------------------------------------------------------------
            |              1/20                   0                   16/45                  0                   49/180                 49/180         1/20
 
 where q = √21| Constructor and Description | 
|---|
| LutherIntegrator(double step)Simple constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected org.hipparchus.ode.nonstiff.LutherStateInterpolator | createInterpolator(boolean forward,
                  double[][] yDotK,
                  ODEStateAndDerivative globalPreviousState,
                  ODEStateAndDerivative globalCurrentState,
                  EquationsMapper mapper)Create an interpolator. | 
| double[][] | getA()Get the internal weights from Butcher array (without the first empty row). | 
| double[] | getB()Get the external weights for the high order method from Butcher array. | 
| double[] | getC()Get the time steps from Butcher array (without the first zero). | 
integrate, singleStepacceptStep, addEventHandler, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getCurrentStepStart, getEquations, getEvaluations, getEvaluationsCounter, getEventHandlers, getMaxEvaluations, getName, getStepHandlers, getStepSize, getStepStart, initIntegration, isLastStep, resetOccurred, sanityChecks, setIsLastStep, setMaxEvaluations, setStateInitialized, setStepSize, setStepStartclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitintegrate, integratepublic LutherIntegrator(double step)
step - integration steppublic double[] getC()
public double[][] getA()
public double[] getB()
protected org.hipparchus.ode.nonstiff.LutherStateInterpolator createInterpolator(boolean forward,
                                                                                 double[][] yDotK,
                                                                                 ODEStateAndDerivative globalPreviousState,
                                                                                 ODEStateAndDerivative globalCurrentState,
                                                                                 EquationsMapper mapper)
createInterpolator in class RungeKuttaIntegratorforward - integration direction indicatoryDotK - slopes at the intermediate pointsglobalPreviousState - start of the global stepglobalCurrentState - end of the global stepmapper - equations mapper for the all equationsCopyright © 2016–2020 Hipparchus.org. All rights reserved.