View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.transform;
23  
24  import java.io.Serializable;
25  
26  import org.hipparchus.analysis.FunctionUtils;
27  import org.hipparchus.analysis.UnivariateFunction;
28  import org.hipparchus.complex.Complex;
29  import org.hipparchus.exception.MathIllegalArgumentException;
30  import org.hipparchus.util.ArithmeticUtils;
31  import org.hipparchus.util.FastMath;
32  
33  /**
34   * Implements the Fast Sine Transform for transformation of one-dimensional real
35   * data sets. For reference, see James S. Walker, <em>Fast Fourier
36   * Transforms</em>, chapter 3 (ISBN 0849371635).
37   * <p>
38   * There are several variants of the discrete sine transform. The present
39   * implementation corresponds to DST-I, with various normalization conventions,
40   * which are specified by the parameter {@link DstNormalization}.
41   * <strong>It should be noted that regardless to the convention, the first
42   * element of the dataset to be transformed must be zero.</strong>
43   * <p>
44   * DST-I is equivalent to DFT of an <em>odd extension</em> of the data series.
45   * More precisely, if x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is the data set
46   * to be sine transformed, the extended data set x<sub>0</sub><sup>&#35;</sup>,
47   * &hellip;, x<sub>2N-1</sub><sup>&#35;</sup> is defined as follows
48   * <ul>
49   * <li>x<sub>0</sub><sup>&#35;</sup> = x<sub>0</sub> = 0,</li>
50   * <li>x<sub>k</sub><sup>&#35;</sup> = x<sub>k</sub> if 1 &le; k &lt; N,</li>
51   * <li>x<sub>N</sub><sup>&#35;</sup> = 0,</li>
52   * <li>x<sub>k</sub><sup>&#35;</sup> = -x<sub>2N-k</sub> if N + 1 &le; k &lt;
53   * 2N.</li>
54   * </ul>
55   * <p>
56   * Then, the standard DST-I y<sub>0</sub>, &hellip;, y<sub>N-1</sub> of the real
57   * data set x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is equal to <em>half</em>
58   * of i (the pure imaginary number) times the N first elements of the DFT of the
59   * extended data set x<sub>0</sub><sup>&#35;</sup>, &hellip;,
60   * x<sub>2N-1</sub><sup>&#35;</sup> <br>
61   * y<sub>n</sub> = (i / 2) &sum;<sub>k=0</sub><sup>2N-1</sup>
62   * x<sub>k</sub><sup>&#35;</sup> exp[-2&pi;i nk / (2N)]
63   * &nbsp;&nbsp;&nbsp;&nbsp;k = 0, &hellip;, N-1.
64   * <p>
65   * The present implementation of the discrete sine transform as a fast sine
66   * transform requires the length of the data to be a power of two. Besides,
67   * it implicitly assumes that the sampled function is odd. In particular, the
68   * first element of the data set must be 0, which is enforced in
69   * {@link #transform(UnivariateFunction, double, double, int, TransformType)},
70   * after sampling.
71   *
72   */
73  public class FastSineTransformer implements RealTransformer, Serializable {
74  
75      /** Serializable version identifier. */
76      static final long serialVersionUID = 20120211L;
77  
78      /** The type of DST to be performed. */
79      private final DstNormalization normalization;
80  
81      /**
82       * Creates a new instance of this class, with various normalization conventions.
83       *
84       * @param normalization the type of normalization to be applied to the transformed data
85       */
86      public FastSineTransformer(final DstNormalization normalization) {
87          this.normalization = normalization;
88      }
89  
90      /**
91       * {@inheritDoc}
92       *
93       * The first element of the specified data set is required to be {@code 0}.
94       *
95       * @throws MathIllegalArgumentException if the length of the data array is
96       *   not a power of two, or the first element of the data array is not zero
97       */
98      @Override
99      public double[] transform(final double[] f, final TransformType type) {
100         if (normalization == DstNormalization.ORTHOGONAL_DST_I) {
101             final double s = FastMath.sqrt(2.0 / f.length);
102             return TransformUtils.scaleArray(fst(f), s);
103         }
104         if (type == TransformType.FORWARD) {
105             return fst(f);
106         }
107         final double s = 2.0 / f.length;
108         return TransformUtils.scaleArray(fst(f), s);
109     }
110 
111     /**
112      * {@inheritDoc}
113      *
114      * This implementation enforces {@code f(x) = 0.0} at {@code x = 0.0}.
115      *
116      * @throws org.hipparchus.exception.MathIllegalArgumentException
117      *   if the lower bound is greater than, or equal to the upper bound
118      * @throws org.hipparchus.exception.MathIllegalArgumentException
119      *   if the number of sample points is negative
120      * @throws MathIllegalArgumentException if the number of sample points is not a power of two
121      */
122     @Override
123     public double[] transform(final UnivariateFunction f,
124         final double min, final double max, final int n,
125         final TransformType type) {
126 
127         final double[] data = FunctionUtils.sample(f, min, max, n);
128         data[0] = 0.0;
129         return transform(data, type);
130     }
131 
132     /**
133      * Perform the FST algorithm (including inverse). The first element of the
134      * data set is required to be {@code 0}.
135      *
136      * @param f the real data array to be transformed
137      * @return the real transformed array
138      * @throws MathIllegalArgumentException if the length of the data array is
139      *   not a power of two, or the first element of the data array is not zero
140      */
141     protected double[] fst(double[] f) throws MathIllegalArgumentException {
142 
143         final double[] transformed = new double[f.length];
144 
145         if (!ArithmeticUtils.isPowerOfTwo(f.length)) {
146             throw new MathIllegalArgumentException(
147                     LocalizedFFTFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
148                     Integer.valueOf(f.length));
149         }
150         if (f[0] != 0.0) {
151             throw new MathIllegalArgumentException(
152                     LocalizedFFTFormats.FIRST_ELEMENT_NOT_ZERO,
153                     Double.valueOf(f[0]));
154         }
155         final int n = f.length;
156         if (n == 1) {       // trivial case
157             transformed[0] = 0.0;
158             return transformed;
159         }
160 
161         // construct a new array and perform FFT on it
162         final double[] x = new double[n];
163         x[0] = 0.0;
164         x[n >> 1] = 2.0 * f[n >> 1];
165         for (int i = 1; i < (n >> 1); i++) {
166             final double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n - i]);
167             final double b = 0.5 * (f[i] - f[n - i]);
168             x[i]     = a + b;
169             x[n - i] = a - b;
170         }
171         FastFourierTransformer transformer;
172         transformer = new FastFourierTransformer(DftNormalization.STANDARD);
173         Complex[] y = transformer.transform(x, TransformType.FORWARD);
174 
175         // reconstruct the FST result for the original array
176         transformed[0] = 0.0;
177         transformed[1] = 0.5 * y[0].getReal();
178         for (int i = 1; i < (n >> 1); i++) {
179             transformed[2 * i]     = -y[i].getImaginary();
180             transformed[2 * i + 1] = y[i].getReal() + transformed[2 * i - 1];
181         }
182 
183         return transformed;
184     }
185 }