1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.transform;
23
24 import java.io.Serializable;
25
26 import org.hipparchus.analysis.FunctionUtils;
27 import org.hipparchus.analysis.UnivariateFunction;
28 import org.hipparchus.complex.Complex;
29 import org.hipparchus.exception.MathIllegalArgumentException;
30 import org.hipparchus.util.ArithmeticUtils;
31 import org.hipparchus.util.FastMath;
32
33 /**
34 * Implements the Fast Sine Transform for transformation of one-dimensional real
35 * data sets. For reference, see James S. Walker, <em>Fast Fourier
36 * Transforms</em>, chapter 3 (ISBN 0849371635).
37 * <p>
38 * There are several variants of the discrete sine transform. The present
39 * implementation corresponds to DST-I, with various normalization conventions,
40 * which are specified by the parameter {@link DstNormalization}.
41 * <strong>It should be noted that regardless to the convention, the first
42 * element of the dataset to be transformed must be zero.</strong>
43 * <p>
44 * DST-I is equivalent to DFT of an <em>odd extension</em> of the data series.
45 * More precisely, if x<sub>0</sub>, …, x<sub>N-1</sub> is the data set
46 * to be sine transformed, the extended data set x<sub>0</sub><sup>#</sup>,
47 * …, x<sub>2N-1</sub><sup>#</sup> is defined as follows
48 * <ul>
49 * <li>x<sub>0</sub><sup>#</sup> = x<sub>0</sub> = 0,</li>
50 * <li>x<sub>k</sub><sup>#</sup> = x<sub>k</sub> if 1 ≤ k < N,</li>
51 * <li>x<sub>N</sub><sup>#</sup> = 0,</li>
52 * <li>x<sub>k</sub><sup>#</sup> = -x<sub>2N-k</sub> if N + 1 ≤ k <
53 * 2N.</li>
54 * </ul>
55 * <p>
56 * Then, the standard DST-I y<sub>0</sub>, …, y<sub>N-1</sub> of the real
57 * data set x<sub>0</sub>, …, x<sub>N-1</sub> is equal to <em>half</em>
58 * of i (the pure imaginary number) times the N first elements of the DFT of the
59 * extended data set x<sub>0</sub><sup>#</sup>, …,
60 * x<sub>2N-1</sub><sup>#</sup> <br>
61 * y<sub>n</sub> = (i / 2) ∑<sub>k=0</sub><sup>2N-1</sup>
62 * x<sub>k</sub><sup>#</sup> exp[-2πi nk / (2N)]
63 * k = 0, …, N-1.
64 * <p>
65 * The present implementation of the discrete sine transform as a fast sine
66 * transform requires the length of the data to be a power of two. Besides,
67 * it implicitly assumes that the sampled function is odd. In particular, the
68 * first element of the data set must be 0, which is enforced in
69 * {@link #transform(UnivariateFunction, double, double, int, TransformType)},
70 * after sampling.
71 *
72 */
73 public class FastSineTransformer implements RealTransformer, Serializable {
74
75 /** Serializable version identifier. */
76 static final long serialVersionUID = 20120211L;
77
78 /** The type of DST to be performed. */
79 private final DstNormalization normalization;
80
81 /**
82 * Creates a new instance of this class, with various normalization conventions.
83 *
84 * @param normalization the type of normalization to be applied to the transformed data
85 */
86 public FastSineTransformer(final DstNormalization normalization) {
87 this.normalization = normalization;
88 }
89
90 /**
91 * {@inheritDoc}
92 *
93 * The first element of the specified data set is required to be {@code 0}.
94 *
95 * @throws MathIllegalArgumentException if the length of the data array is
96 * not a power of two, or the first element of the data array is not zero
97 */
98 @Override
99 public double[] transform(final double[] f, final TransformType type) {
100 if (normalization == DstNormalization.ORTHOGONAL_DST_I) {
101 final double s = FastMath.sqrt(2.0 / f.length);
102 return TransformUtils.scaleArray(fst(f), s);
103 }
104 if (type == TransformType.FORWARD) {
105 return fst(f);
106 }
107 final double s = 2.0 / f.length;
108 return TransformUtils.scaleArray(fst(f), s);
109 }
110
111 /**
112 * {@inheritDoc}
113 *
114 * This implementation enforces {@code f(x) = 0.0} at {@code x = 0.0}.
115 *
116 * @throws org.hipparchus.exception.MathIllegalArgumentException
117 * if the lower bound is greater than, or equal to the upper bound
118 * @throws org.hipparchus.exception.MathIllegalArgumentException
119 * if the number of sample points is negative
120 * @throws MathIllegalArgumentException if the number of sample points is not a power of two
121 */
122 @Override
123 public double[] transform(final UnivariateFunction f,
124 final double min, final double max, final int n,
125 final TransformType type) {
126
127 final double[] data = FunctionUtils.sample(f, min, max, n);
128 data[0] = 0.0;
129 return transform(data, type);
130 }
131
132 /**
133 * Perform the FST algorithm (including inverse). The first element of the
134 * data set is required to be {@code 0}.
135 *
136 * @param f the real data array to be transformed
137 * @return the real transformed array
138 * @throws MathIllegalArgumentException if the length of the data array is
139 * not a power of two, or the first element of the data array is not zero
140 */
141 protected double[] fst(double[] f) throws MathIllegalArgumentException {
142
143 final double[] transformed = new double[f.length];
144
145 if (!ArithmeticUtils.isPowerOfTwo(f.length)) {
146 throw new MathIllegalArgumentException(
147 LocalizedFFTFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
148 f.length);
149 }
150 if (f[0] != 0.0) {
151 throw new MathIllegalArgumentException(
152 LocalizedFFTFormats.FIRST_ELEMENT_NOT_ZERO,
153 f[0]);
154 }
155 final int n = f.length;
156 if (n == 1) { // trivial case
157 transformed[0] = 0.0;
158 return transformed;
159 }
160
161 // construct a new array and perform FFT on it
162 final double[] x = new double[n];
163 x[0] = 0.0;
164 x[n >> 1] = 2.0 * f[n >> 1];
165 for (int i = 1; i < (n >> 1); i++) {
166 final double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n - i]);
167 final double b = 0.5 * (f[i] - f[n - i]);
168 x[i] = a + b;
169 x[n - i] = a - b;
170 }
171 FastFourierTransformer transformer;
172 transformer = new FastFourierTransformer(DftNormalization.STANDARD);
173 Complex[] y = transformer.transform(x, TransformType.FORWARD);
174
175 // reconstruct the FST result for the original array
176 transformed[0] = 0.0;
177 transformed[1] = 0.5 * y[0].getReal();
178 for (int i = 1; i < (n >> 1); i++) {
179 transformed[2 * i] = -y[i].getImaginary();
180 transformed[2 * i + 1] = y[i].getReal() + transformed[2 * i - 1];
181 }
182
183 return transformed;
184 }
185 }