1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.transform;
23
24 import java.io.Serializable;
25
26 import org.hipparchus.analysis.FunctionUtils;
27 import org.hipparchus.analysis.UnivariateFunction;
28 import org.hipparchus.complex.Complex;
29 import org.hipparchus.exception.MathIllegalArgumentException;
30 import org.hipparchus.util.ArithmeticUtils;
31 import org.hipparchus.util.FastMath;
32 import org.hipparchus.util.SinCos;
33
34 /**
35 * Implements the Fast Cosine Transform for transformation of one-dimensional
36 * real data sets. For reference, see James S. Walker, <em>Fast Fourier
37 * Transforms</em>, chapter 3 (ISBN 0849371635).
38 * <p>
39 * There are several variants of the discrete cosine transform. The present
40 * implementation corresponds to DCT-I, with various normalization conventions,
41 * which are specified by the parameter {@link DctNormalization}.
42 * <p>
43 * DCT-I is equivalent to DFT of an <em>even extension</em> of the data series.
44 * More precisely, if x<sub>0</sub>, …, x<sub>N-1</sub> is the data set
45 * to be cosine transformed, the extended data set
46 * x<sub>0</sub><sup>#</sup>, …, x<sub>2N-3</sub><sup>#</sup>
47 * is defined as follows
48 * <ul>
49 * <li>x<sub>k</sub><sup>#</sup> = x<sub>k</sub> if 0 ≤ k < N,</li>
50 * <li>x<sub>k</sub><sup>#</sup> = x<sub>2N-2-k</sub>
51 * if N ≤ k < 2N - 2.</li>
52 * </ul>
53 * <p>
54 * Then, the standard DCT-I y<sub>0</sub>, …, y<sub>N-1</sub> of the real
55 * data set x<sub>0</sub>, …, x<sub>N-1</sub> is equal to <em>half</em>
56 * of the N first elements of the DFT of the extended data set
57 * x<sub>0</sub><sup>#</sup>, …, x<sub>2N-3</sub><sup>#</sup>
58 * <br>
59 * y<sub>n</sub> = (1 / 2) ∑<sub>k=0</sub><sup>2N-3</sup>
60 * x<sub>k</sub><sup>#</sup> exp[-2πi nk / (2N - 2)]
61 * k = 0, …, N-1.
62 * <p>
63 * The present implementation of the discrete cosine transform as a fast cosine
64 * transform requires the length of the data set to be a power of two plus one
65 * (N = 2<sup>n</sup> + 1). Besides, it implicitly assumes
66 * that the sampled function is even.
67 *
68 */
69 public class FastCosineTransformer implements RealTransformer, Serializable {
70
71 /** Serializable version identifier. */
72 static final long serialVersionUID = 20120212L;
73
74 /** The type of DCT to be performed. */
75 private final DctNormalization normalization;
76
77 /**
78 * Creates a new instance of this class, with various normalization
79 * conventions.
80 *
81 * @param normalization the type of normalization to be applied to the
82 * transformed data
83 */
84 public FastCosineTransformer(final DctNormalization normalization) {
85 this.normalization = normalization;
86 }
87
88 /**
89 * {@inheritDoc}
90 *
91 * @throws MathIllegalArgumentException if the length of the data array is
92 * not a power of two plus one
93 */
94 @Override
95 public double[] transform(final double[] f, final TransformType type)
96 throws MathIllegalArgumentException {
97 if (type == TransformType.FORWARD) {
98 if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
99 final double s = FastMath.sqrt(2.0 / (f.length - 1));
100 return TransformUtils.scaleArray(fct(f), s);
101 }
102 return fct(f);
103 }
104 final double s2 = 2.0 / (f.length - 1);
105 final double s1;
106 if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
107 s1 = FastMath.sqrt(s2);
108 } else {
109 s1 = s2;
110 }
111 return TransformUtils.scaleArray(fct(f), s1);
112 }
113
114 /**
115 * {@inheritDoc}
116 *
117 * @throws org.hipparchus.exception.MathIllegalArgumentException
118 * if the lower bound is greater than, or equal to the upper bound
119 * @throws org.hipparchus.exception.MathIllegalArgumentException
120 * if the number of sample points is negative
121 * @throws MathIllegalArgumentException if the number of sample points is
122 * not a power of two plus one
123 */
124 @Override
125 public double[] transform(final UnivariateFunction f,
126 final double min, final double max, final int n,
127 final TransformType type) throws MathIllegalArgumentException {
128
129 final double[] data = FunctionUtils.sample(f, min, max, n);
130 return transform(data, type);
131 }
132
133 /**
134 * Perform the FCT algorithm (including inverse).
135 *
136 * @param f the real data array to be transformed
137 * @return the real transformed array
138 * @throws MathIllegalArgumentException if the length of the data array is
139 * not a power of two plus one
140 */
141 protected double[] fct(double[] f)
142 throws MathIllegalArgumentException {
143
144 final double[] transformed = new double[f.length];
145
146 final int n = f.length - 1;
147 if (!ArithmeticUtils.isPowerOfTwo(n)) {
148 throw new MathIllegalArgumentException(LocalizedFFTFormats.NOT_POWER_OF_TWO_PLUS_ONE,
149 f.length);
150 }
151 if (n == 1) { // trivial case
152 transformed[0] = 0.5 * (f[0] + f[1]);
153 transformed[1] = 0.5 * (f[0] - f[1]);
154 return transformed;
155 }
156
157 // construct a new array and perform FFT on it
158 final double[] x = new double[n];
159 x[0] = 0.5 * (f[0] + f[n]);
160 x[n >> 1] = f[n >> 1];
161 // temporary variable for transformed[1]
162 double t1 = 0.5 * (f[0] - f[n]);
163 for (int i = 1; i < (n >> 1); i++) {
164 final SinCos sc = FastMath.sinCos(i * FastMath.PI / n);
165 final double a = 0.5 * (f[i] + f[n - i]);
166 final double b = sc.sin() * (f[i] - f[n - i]);
167 final double c = sc.cos() * (f[i] - f[n - i]);
168 x[i] = a - b;
169 x[n - i] = a + b;
170 t1 += c;
171 }
172 FastFourierTransformer transformer;
173 transformer = new FastFourierTransformer(DftNormalization.STANDARD);
174 Complex[] y = transformer.transform(x, TransformType.FORWARD);
175
176 // reconstruct the FCT result for the original array
177 transformed[0] = y[0].getReal();
178 transformed[1] = t1;
179 for (int i = 1; i < (n >> 1); i++) {
180 transformed[2 * i] = y[i].getReal();
181 transformed[2 * i + 1] = transformed[2 * i - 1] - y[i].getImaginary();
182 }
183 transformed[n] = y[n >> 1].getReal();
184
185 return transformed;
186 }
187 }