1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.stat.regression; 23 24 /** 25 * The multiple linear regression can be represented in matrix-notation. 26 * <pre> 27 * y=X*b+u 28 * </pre> 29 * where y is an <code>n-vector</code> <b>regressand</b>, X is a <code>[n,k]</code> matrix whose <code>k</code> columns are called 30 * <b>regressors</b>, b is <code>k-vector</code> of <b>regression parameters</b> and <code>u</code> is an <code>n-vector</code> 31 * of <b>error terms</b> or <b>residuals</b>. 32 * 33 * The notation is quite standard in literature, 34 * cf eg <a href="http://www.econ.queensu.ca/ETM">Davidson and MacKinnon, Econometrics Theory and Methods, 2004</a>. 35 */ 36 public interface MultipleLinearRegression { 37 38 /** 39 * Estimates the regression parameters b. 40 * 41 * @return The [k,1] array representing b 42 */ 43 double[] estimateRegressionParameters(); 44 45 /** 46 * Estimates the variance of the regression parameters, ie Var(b). 47 * 48 * @return The [k,k] array representing the variance of b 49 */ 50 double[][] estimateRegressionParametersVariance(); 51 52 /** 53 * Estimates the residuals, ie u = y - X*b. 54 * 55 * @return The [n,1] array representing the residuals 56 */ 57 double[] estimateResiduals(); 58 59 /** 60 * Returns the variance of the regressand, ie Var(y). 61 * 62 * @return The double representing the variance of y 63 */ 64 double estimateRegressandVariance(); 65 66 /** 67 * Returns the standard errors of the regression parameters. 68 * 69 * @return standard errors of estimated regression parameters 70 */ 71 double[] estimateRegressionParametersStandardErrors(); 72 73 }