1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.stat.inference;
23
24 import java.util.ArrayList;
25 import java.util.List;
26
27 import org.hipparchus.distribution.continuous.NormalDistribution;
28 import org.hipparchus.exception.LocalizedCoreFormats;
29 import org.hipparchus.exception.MathIllegalArgumentException;
30 import org.hipparchus.exception.MathIllegalStateException;
31 import org.hipparchus.exception.NullArgumentException;
32 import org.hipparchus.stat.ranking.NaNStrategy;
33 import org.hipparchus.stat.ranking.NaturalRanking;
34 import org.hipparchus.stat.ranking.TiesStrategy;
35 import org.hipparchus.util.FastMath;
36 import org.hipparchus.util.MathArrays;
37
38 /**
39 * An implementation of the Wilcoxon signed-rank test.
40 *
41 * This implementation currently handles only paired (equal length) samples
42 * and discards tied pairs from the analysis. The latter behavior differs from
43 * the R implementation of wilcox.test and corresponds to the "wilcox"
44 * zero_method configurable in scipy.stats.wilcoxon.
45 */
46 public class WilcoxonSignedRankTest { // NOPMD - this is not a Junit test class, PMD false positive here
47
48 /** Ranking algorithm. */
49 private final NaturalRanking naturalRanking;
50
51 /**
52 * Create a test instance where NaN's are left in place and ties get the
53 * average of applicable ranks.
54 */
55 public WilcoxonSignedRankTest() {
56 naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
57 TiesStrategy.AVERAGE);
58 }
59
60 /**
61 * Create a test instance using the given strategies for NaN's and ties.
62 *
63 * @param nanStrategy specifies the strategy that should be used for
64 * Double.NaN's
65 * @param tiesStrategy specifies the strategy that should be used for ties
66 */
67 public WilcoxonSignedRankTest(final NaNStrategy nanStrategy,
68 final TiesStrategy tiesStrategy) {
69 naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
70 }
71
72 /**
73 * Ensures that the provided arrays fulfills the assumptions. Also computes
74 * and returns the number of tied pairs (i.e., zero differences).
75 *
76 * @param x first sample
77 * @param y second sample
78 * @return the number of indices where x[i] == y[i]
79 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
80 * @throws MathIllegalArgumentException if {@code x} or {@code y} are
81 * zero-length
82 * @throws MathIllegalArgumentException if {@code x} and {@code y} do not
83 * have the same length.
84 * @throws MathIllegalArgumentException if all pairs are tied (i.e., if no
85 * data remains when tied pairs have been removed.
86 */
87 private int ensureDataConformance(final double[] x, final double[] y)
88 throws MathIllegalArgumentException, NullArgumentException {
89
90 if (x == null || y == null) {
91 throw new NullArgumentException();
92 }
93 if (x.length == 0 || y.length == 0) {
94 throw new MathIllegalArgumentException(LocalizedCoreFormats.NO_DATA);
95 }
96 MathArrays.checkEqualLength(y, x);
97 int nTies = 0;
98 for (int i = 0; i < x.length; i++) {
99 if (x[i] == y[i]) {
100 nTies++;
101 }
102 }
103 if (x.length - nTies == 0) {
104 throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_DATA);
105 }
106 return nTies;
107 }
108
109 /**
110 * Calculates y[i] - x[i] for all i, discarding ties.
111 *
112 * @param x first sample
113 * @param y second sample
114 * @return z = y - x (minus tied values)
115 */
116 private double[] calculateDifferences(final double[] x, final double[] y) {
117 final List<Double> differences = new ArrayList<>();
118 for (int i = 0; i < x.length; ++i) {
119 if (y[i] != x[i]) {
120 differences.add(y[i] - x[i]);
121 }
122 }
123 final int nDiff = differences.size();
124 final double[] z = new double[nDiff];
125 for (int i = 0; i < nDiff; i++) {
126 z[i] = differences.get(i);
127 }
128 return z;
129 }
130
131 /**
132 * Calculates |z[i]| for all i
133 *
134 * @param z sample
135 * @return |z|
136 * @throws NullArgumentException if {@code z} is {@code null}
137 * @throws MathIllegalArgumentException if {@code z} is zero-length.
138 */
139 private double[] calculateAbsoluteDifferences(final double[] z)
140 throws MathIllegalArgumentException, NullArgumentException {
141
142 if (z == null) {
143 throw new NullArgumentException();
144 }
145
146 if (z.length == 0) {
147 throw new MathIllegalArgumentException(LocalizedCoreFormats.NO_DATA);
148 }
149
150 final double[] zAbs = new double[z.length];
151
152 for (int i = 0; i < z.length; ++i) {
153 zAbs[i] = FastMath.abs(z[i]);
154 }
155
156 return zAbs;
157 }
158
159 /**
160 * Computes the
161 * <a href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
162 * Wilcoxon signed ranked statistic</a> comparing means for two related
163 * samples or repeated measurements on a single sample.
164 * <p>
165 * This statistic can be used to perform a Wilcoxon signed ranked test
166 * evaluating the null hypothesis that the two related samples or repeated
167 * measurements on a single sample have equal mean.
168 * </p>
169 * <p>
170 * Let X<sub>i</sub> denote the i'th individual of the first sample and
171 * Y<sub>i</sub> the related i'th individual in the second sample. Let
172 * Z<sub>i</sub> = Y<sub>i</sub> - X<sub>i</sub>.
173 * </p>
174 * <p>* <strong>Preconditions</strong>:</p>
175 * <ul>
176 * <li>The differences Z<sub>i</sub> must be independent.</li>
177 * <li>Each Z<sub>i</sub> comes from a continuous population (they must be
178 * identical) and is symmetric about a common median.</li>
179 * <li>The values that X<sub>i</sub> and Y<sub>i</sub> represent are
180 * ordered, so the comparisons greater than, less than, and equal to are
181 * meaningful.</li>
182 * </ul>
183 *
184 * @param x the first sample
185 * @param y the second sample
186 * @return wilcoxonSignedRank statistic (the larger of W+ and W-)
187 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
188 * @throws MathIllegalArgumentException if {@code x} or {@code y} are
189 * zero-length.
190 * @throws MathIllegalArgumentException if {@code x} and {@code y} do not
191 * have the same length.
192 */
193 public double wilcoxonSignedRank(final double[] x, final double[] y)
194 throws MathIllegalArgumentException, NullArgumentException {
195
196 ensureDataConformance(x, y);
197
198 final double[] z = calculateDifferences(x, y);
199 final double[] zAbs = calculateAbsoluteDifferences(z);
200
201 final double[] ranks = naturalRanking.rank(zAbs);
202
203 double Wplus = 0;
204
205 for (int i = 0; i < z.length; ++i) {
206 if (z[i] > 0) {
207 Wplus += ranks[i];
208 }
209 }
210
211 final int n = z.length;
212 final double Wminus = ((n * (n + 1)) / 2.0) - Wplus;
213
214 return FastMath.max(Wplus, Wminus);
215 }
216
217 /**
218 * Calculates the p-value associated with a Wilcoxon signed rank statistic
219 * by enumerating all possible rank sums and counting the number that exceed
220 * the given value.
221 *
222 * @param stat Wilcoxon signed rank statistic value
223 * @param n number of subjects (corresponding to x.length)
224 * @return two-sided exact p-value
225 */
226 private double calculateExactPValue(final double stat, final int n) {
227 final int m = 1 << n;
228 int largerRankSums = 0;
229 for (int i = 0; i < m; ++i) {
230 int rankSum = 0;
231
232 // Generate all possible rank sums
233 for (int j = 0; j < n; ++j) {
234
235 // (i >> j) & 1 extract i's j-th bit from the right
236 if (((i >> j) & 1) == 1) {
237 rankSum += j + 1;
238 }
239 }
240
241 if (rankSum >= stat) {
242 ++largerRankSums;
243 }
244 }
245
246 /*
247 * largerRankSums / m gives the one-sided p-value, so it's multiplied
248 * with 2 to get the two-sided p-value
249 */
250 return 2 * ((double) largerRankSums) / m;
251 }
252
253 /**
254 * Computes an estimate of the (2-sided) p-value using the normal
255 * approximation. Includes a continuity correction in computing the
256 * correction factor.
257 *
258 * @param stat Wilcoxon rank sum statistic
259 * @param n number of subjects (corresponding to x.length minus any tied ranks)
260 * @return two-sided asymptotic p-value
261 */
262 private double calculateAsymptoticPValue(final double stat, final int n) {
263
264 final double ES = n * (n + 1) / 4.0;
265
266 /*
267 * Same as (but saves computations): final double VarW = ((double) (N *
268 * (N + 1) * (2*N + 1))) / 24;
269 */
270 final double VarS = ES * ((2 * n + 1) / 6.0);
271
272 double z = stat - ES;
273 final double t = FastMath.signum(z);
274 z = (z - t * 0.5) / FastMath.sqrt(VarS);
275
276 // want 2-sided tail probability, so make sure z < 0
277 if (z > 0) {
278 z = -z;
279 }
280 final NormalDistribution standardNormal = new NormalDistribution(0, 1);
281 return 2 * standardNormal.cumulativeProbability(z);
282 }
283
284 /**
285 * Returns the <i>observed significance level</i>, or
286 * <a href= "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
287 * p-value</a>, associated with a
288 * <a href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
289 * Wilcoxon signed ranked statistic</a> comparing mean for two related
290 * samples or repeated measurements on a single sample.
291 * <p>
292 * Let X<sub>i</sub> denote the i'th individual of the first sample and
293 * Y<sub>i</sub> the related i'th individual in the second sample. Let
294 * Z<sub>i</sub> = Y<sub>i</sub> - X<sub>i</sub>.
295 * </p>
296 * <p>
297 * <strong>Preconditions</strong>:</p>
298 * <ul>
299 * <li>The differences Z<sub>i</sub> must be independent.</li>
300 * <li>Each Z<sub>i</sub> comes from a continuous population (they must be
301 * identical) and is symmetric about a common median.</li>
302 * <li>The values that X<sub>i</sub> and Y<sub>i</sub> represent are
303 * ordered, so the comparisons greater than, less than, and equal to are
304 * meaningful.</li>
305 * </ul>
306 * <p><strong>Implementation notes</strong>:</p>
307 * <ul>
308 * <li>Tied pairs are discarded from the data.</li>
309 * <li>When {@code exactPValue} is false, the normal approximation is used
310 * to estimate the p-value including a continuity correction factor.
311 * {@code wilcoxonSignedRankTest(x, y, true)} should give the same results
312 * as {@code wilcox.test(x, y, alternative = "two.sided", mu = 0,
313 * paired = TRUE, exact = FALSE, correct = TRUE)} in R (as long as
314 * there are no tied pairs in the data).</li>
315 * </ul>
316 *
317 * @param x the first sample
318 * @param y the second sample
319 * @param exactPValue if the exact p-value is wanted (only works for
320 * x.length <= 30, if true and x.length > 30, MathIllegalArgumentException is thrown)
321 * @return p-value
322 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
323 * @throws MathIllegalArgumentException if {@code x} or {@code y} are
324 * zero-length or for all i, x[i] == y[i]
325 * @throws MathIllegalArgumentException if {@code x} and {@code y} do not
326 * have the same length.
327 * @throws MathIllegalArgumentException if {@code exactPValue} is
328 * {@code true} and {@code x.length} > 30
329 * @throws MathIllegalStateException if the p-value can not be computed due
330 * to a convergence error
331 * @throws MathIllegalStateException if the maximum number of iterations is
332 * exceeded
333 */
334 public double wilcoxonSignedRankTest(final double[] x, final double[] y,
335 final boolean exactPValue)
336 throws MathIllegalArgumentException, NullArgumentException,
337 MathIllegalStateException {
338
339 final int nTies = ensureDataConformance(x, y);
340
341 final int n = x.length - nTies;
342 final double stat = wilcoxonSignedRank(x, y);
343
344 if (exactPValue && n > 30) {
345 throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE,
346 n, 30);
347 }
348
349 if (exactPValue) {
350 return calculateExactPValue(stat, n);
351 } else {
352 return calculateAsymptoticPValue(stat, n);
353 }
354 }
355 }