1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.stat.descriptive.moment;
23
24 import java.io.Serializable;
25
26 import org.hipparchus.exception.MathIllegalArgumentException;
27 import org.hipparchus.exception.NullArgumentException;
28 import org.hipparchus.stat.descriptive.AbstractStorelessUnivariateStatistic;
29 import org.hipparchus.util.FastMath;
30 import org.hipparchus.util.MathArrays;
31 import org.hipparchus.util.MathUtils;
32
33
34 /**
35 * Computes the Kurtosis of the available values.
36 * <p>
37 * We use the following (unbiased) formula to define kurtosis:
38 * <p>
39 * kurtosis = { [n(n+1) / (n -1)(n - 2)(n-3)] sum[(x_i - mean)^4] / std^4 } - [3(n-1)^2 / (n-2)(n-3)]
40 * <p>
41 * where n is the number of values, mean is the {@link Mean} and std is the
42 * {@link StandardDeviation}.
43 * <p>
44 * Note that this statistic is undefined for n < 4. <code>Double.Nan</code>
45 * is returned when there is not sufficient data to compute the statistic.
46 * Note that Double.NaN may also be returned if the input includes NaN
47 * and / or infinite values.
48 * <p>
49 * <strong>Note that this implementation is not synchronized.</strong> If
50 * multiple threads access an instance of this class concurrently, and at least
51 * one of the threads invokes the <code>increment()</code> or
52 * <code>clear()</code> method, it must be synchronized externally.
53 */
54 public class Kurtosis extends AbstractStorelessUnivariateStatistic implements Serializable {
55
56 /** Serializable version identifier */
57 private static final long serialVersionUID = 20150412L;
58
59 /**Fourth Moment on which this statistic is based */
60 protected final FourthMoment moment;
61
62 /**
63 * Determines whether or not this statistic can be incremented or cleared.
64 * <p>
65 * Statistics based on (constructed from) external moments cannot
66 * be incremented or cleared.
67 */
68 protected final boolean incMoment;
69
70 /**
71 * Construct a Kurtosis.
72 */
73 public Kurtosis() {
74 moment = new FourthMoment();
75 incMoment = true;
76 }
77
78 /**
79 * Construct a Kurtosis from an external moment.
80 *
81 * @param m4 external Moment
82 */
83 public Kurtosis(final FourthMoment m4) {
84 this.moment = m4;
85 incMoment = false;
86 }
87
88 /**
89 * Copy constructor, creates a new {@code Kurtosis} identical
90 * to the {@code original}.
91 *
92 * @param original the {@code Kurtosis} instance to copy
93 * @throws NullArgumentException if original is null
94 */
95 public Kurtosis(Kurtosis original) throws NullArgumentException {
96 MathUtils.checkNotNull(original);
97 this.moment = original.moment.copy();
98 this.incMoment = original.incMoment;
99 }
100
101 /**
102 * {@inheritDoc}
103 * <p>Note that when {@link #Kurtosis(FourthMoment)} is used to
104 * create a Variance, this method does nothing. In that case, the
105 * FourthMoment should be incremented directly.</p>
106 */
107 @Override
108 public void increment(final double d) {
109 if (incMoment) {
110 moment.increment(d);
111 }
112 }
113
114 /** {@inheritDoc} */
115 @Override
116 public double getResult() {
117 double kurtosis = Double.NaN;
118 if (moment.getN() > 3) {
119 double variance = moment.m2 / (moment.n - 1);
120 if (moment.n <= 3 || variance < 10E-20) {
121 kurtosis = 0.0;
122 } else {
123 double n = moment.n;
124 kurtosis =
125 (n * (n + 1) * moment.getResult() -
126 3 * moment.m2 * moment.m2 * (n - 1)) /
127 ((n - 1) * (n -2) * (n -3) * variance * variance);
128 }
129 }
130 return kurtosis;
131 }
132
133 /** {@inheritDoc} */
134 @Override
135 public void clear() {
136 if (incMoment) {
137 moment.clear();
138 }
139 }
140
141 /** {@inheritDoc} */
142 @Override
143 public long getN() {
144 return moment.getN();
145 }
146
147 /* UnvariateStatistic Approach */
148
149 /**
150 * Returns the kurtosis of the entries in the specified portion of the
151 * input array.
152 * <p>
153 * See {@link Kurtosis} for details on the computing algorithm.</p>
154 * <p>
155 * Throws <code>IllegalArgumentException</code> if the array is null.</p>
156 *
157 * @param values the input array
158 * @param begin index of the first array element to include
159 * @param length the number of elements to include
160 * @return the kurtosis of the values or Double.NaN if length is less than 4
161 * @throws MathIllegalArgumentException if the input array is null or the array
162 * index parameters are not valid
163 */
164 @Override
165 public double evaluate(final double[] values, final int begin, final int length)
166 throws MathIllegalArgumentException {
167
168 // Initialize the kurtosis
169 double kurt = Double.NaN;
170
171 if (MathArrays.verifyValues(values, begin, length) && length > 3) {
172 // Compute the mean and standard deviation
173 Variance variance = new Variance();
174 variance.incrementAll(values, begin, length);
175 double mean = variance.moment.m1;
176 double stdDev = FastMath.sqrt(variance.getResult());
177
178 // Sum the ^4 of the distance from the mean divided by the
179 // standard deviation
180 double accum3 = 0.0;
181 for (int i = begin; i < begin + length; i++) {
182 accum3 += FastMath.pow(values[i] - mean, 4.0);
183 }
184 accum3 /= FastMath.pow(stdDev, 4.0d);
185
186 // Get N
187 double n0 = length;
188
189 double coefficientOne =
190 (n0 * (n0 + 1)) / ((n0 - 1) * (n0 - 2) * (n0 - 3));
191 double termTwo =
192 (3 * FastMath.pow(n0 - 1, 2.0)) / ((n0 - 2) * (n0 - 3));
193
194 // Calculate kurtosis
195 kurt = (coefficientOne * accum3) - termTwo;
196 }
197 return kurt;
198 }
199
200 /** {@inheritDoc} */
201 @Override
202 public Kurtosis copy() {
203 return new Kurtosis(this);
204 }
205
206 }