1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.stat; 23 24 import java.util.Arrays; 25 import java.util.List; 26 27 import org.hipparchus.exception.LocalizedCoreFormats; 28 import org.hipparchus.exception.MathIllegalArgumentException; 29 import org.hipparchus.stat.descriptive.DescriptiveStatistics; 30 import org.hipparchus.stat.descriptive.UnivariateStatistic; 31 import org.hipparchus.stat.descriptive.moment.GeometricMean; 32 import org.hipparchus.stat.descriptive.moment.Mean; 33 import org.hipparchus.stat.descriptive.moment.Variance; 34 import org.hipparchus.stat.descriptive.rank.Max; 35 import org.hipparchus.stat.descriptive.rank.Min; 36 import org.hipparchus.stat.descriptive.rank.Percentile; 37 import org.hipparchus.stat.descriptive.summary.Product; 38 import org.hipparchus.stat.descriptive.summary.Sum; 39 import org.hipparchus.stat.descriptive.summary.SumOfLogs; 40 import org.hipparchus.stat.descriptive.summary.SumOfSquares; 41 import org.hipparchus.util.MathArrays; 42 import org.hipparchus.util.MathUtils; 43 44 /** 45 * StatUtils provides static methods for computing statistics based on data 46 * stored in double[] arrays. 47 */ 48 public final class StatUtils { 49 50 /** sum */ 51 private static final UnivariateStatistic SUM = new Sum(); 52 53 /** sumSq */ 54 private static final UnivariateStatistic SUM_OF_SQUARES = new SumOfSquares(); 55 56 /** prod */ 57 private static final UnivariateStatistic PRODUCT = new Product(); 58 59 /** sumLog */ 60 private static final UnivariateStatistic SUM_OF_LOGS = new SumOfLogs(); 61 62 /** min */ 63 private static final UnivariateStatistic MIN = new Min(); 64 65 /** max */ 66 private static final UnivariateStatistic MAX = new Max(); 67 68 /** mean */ 69 private static final UnivariateStatistic MEAN = new Mean(); 70 71 /** variance */ 72 private static final Variance VARIANCE = new Variance(); 73 74 /** percentile */ 75 private static final Percentile PERCENTILE = new Percentile(); 76 77 /** geometric mean */ 78 private static final GeometricMean GEOMETRIC_MEAN = new GeometricMean(); 79 80 /** 81 * Private Constructor 82 */ 83 private StatUtils() { 84 } 85 86 /** 87 * Returns the sum of the values in the input array, or 88 * <code>Double.NaN</code> if the array is empty. 89 * <p> 90 * Throws <code>IllegalArgumentException</code> if the input array is null. 91 * 92 * @param values array of values to sum 93 * @return the sum of the values or <code>Double.NaN</code> if the array is empty 94 * @throws MathIllegalArgumentException if the array is null 95 */ 96 public static double sum(final double... values) throws MathIllegalArgumentException { 97 return SUM.evaluate(values); 98 } 99 100 /** 101 * Returns the sum of the entries in the specified portion of 102 * the input array, or <code>Double.NaN</code> if the designated subarray is empty. 103 * <p> 104 * Throws <code>IllegalArgumentException</code> if the array is null. 105 * 106 * @param values the input array 107 * @param begin index of the first array element to include 108 * @param length the number of elements to include 109 * @return the sum of the values or Double.NaN if length = 0 110 * @throws MathIllegalArgumentException if the array is null or the array index 111 * parameters are not valid 112 */ 113 public static double sum(final double[] values, final int begin, final int length) 114 throws MathIllegalArgumentException { 115 return SUM.evaluate(values, begin, length); 116 } 117 118 /** 119 * Returns the sum of the squares of the entries in the input array, or 120 * <code>Double.NaN</code> if the array is empty. 121 * <p> 122 * Throws <code>IllegalArgumentException</code> if the array is null. 123 * 124 * @param values input array 125 * @return the sum of the squared values or <code>Double.NaN</code> if the array is empty 126 * @throws MathIllegalArgumentException if the array is null 127 */ 128 public static double sumSq(final double... values) throws MathIllegalArgumentException { 129 return SUM_OF_SQUARES.evaluate(values); 130 } 131 132 /** 133 * Returns the sum of the squares of the entries in the specified portion of 134 * the input array, or <code>Double.NaN</code> if the designated subarray 135 * is empty. 136 * <p> 137 * Throws <code>IllegalArgumentException</code> if the array is null. 138 * 139 * @param values the input array 140 * @param begin index of the first array element to include 141 * @param length the number of elements to include 142 * @return the sum of the squares of the values or Double.NaN if length = 0 143 * @throws MathIllegalArgumentException if the array is null or the array index 144 * parameters are not valid 145 */ 146 public static double sumSq(final double[] values, final int begin, final int length) 147 throws MathIllegalArgumentException { 148 return SUM_OF_SQUARES.evaluate(values, begin, length); 149 } 150 151 /** 152 * Returns the product of the entries in the input array, or 153 * <code>Double.NaN</code> if the array is empty. 154 * <p> 155 * Throws <code>IllegalArgumentException</code> if the array is null. 156 * 157 * @param values the input array 158 * @return the product of the values or Double.NaN if the array is empty 159 * @throws MathIllegalArgumentException if the array is null 160 */ 161 public static double product(final double... values) throws MathIllegalArgumentException { 162 return PRODUCT.evaluate(values); 163 } 164 165 /** 166 * Returns the product of the entries in the specified portion of 167 * the input array, or <code>Double.NaN</code> if the designated subarray 168 * is empty. 169 * <p> 170 * Throws <code>IllegalArgumentException</code> if the array is null. 171 * 172 * @param values the input array 173 * @param begin index of the first array element to include 174 * @param length the number of elements to include 175 * @return the product of the values or Double.NaN if length = 0 176 * @throws MathIllegalArgumentException if the array is null or the array index 177 * parameters are not valid 178 */ 179 public static double product(final double[] values, final int begin, final int length) 180 throws MathIllegalArgumentException { 181 return PRODUCT.evaluate(values, begin, length); 182 } 183 184 /** 185 * Returns the sum of the natural logs of the entries in the input array, or 186 * <code>Double.NaN</code> if the array is empty. 187 * <p> 188 * Throws <code>IllegalArgumentException</code> if the array is null. 189 * <p> 190 * See {@link org.hipparchus.stat.descriptive.summary.SumOfLogs}. 191 * 192 * @param values the input array 193 * @return the sum of the natural logs of the values or Double.NaN if the array is empty 194 * @throws MathIllegalArgumentException if the array is null 195 */ 196 public static double sumLog(final double... values) throws MathIllegalArgumentException { 197 return SUM_OF_LOGS.evaluate(values); 198 } 199 200 /** 201 * Returns the sum of the natural logs of the entries in the specified portion of 202 * the input array, or <code>Double.NaN</code> if the designated subarray is empty. 203 * <p> 204 * Throws <code>IllegalArgumentException</code> if the array is null. 205 * <p> 206 * See {@link org.hipparchus.stat.descriptive.summary.SumOfLogs}. 207 * 208 * @param values the input array 209 * @param begin index of the first array element to include 210 * @param length the number of elements to include 211 * @return the sum of the natural logs of the values or Double.NaN if 212 * length = 0 213 * @throws MathIllegalArgumentException if the array is null or the array index 214 * parameters are not valid 215 */ 216 public static double sumLog(final double[] values, final int begin, final int length) 217 throws MathIllegalArgumentException { 218 return SUM_OF_LOGS.evaluate(values, begin, length); 219 } 220 221 /** 222 * Returns the arithmetic mean of the entries in the input array, or 223 * <code>Double.NaN</code> if the array is empty. 224 * <p> 225 * Throws <code>IllegalArgumentException</code> if the array is null. 226 * <p> 227 * See {@link org.hipparchus.stat.descriptive.moment.Mean} for 228 * details on the computing algorithm. 229 * 230 * @param values the input array 231 * @return the mean of the values or Double.NaN if the array is empty 232 * @throws MathIllegalArgumentException if the array is null 233 */ 234 public static double mean(final double... values) throws MathIllegalArgumentException { 235 return MEAN.evaluate(values); 236 } 237 238 /** 239 * Returns the arithmetic mean of the entries in the specified portion of 240 * the input array, or <code>Double.NaN</code> if the designated subarray 241 * is empty. 242 * <p> 243 * Throws <code>IllegalArgumentException</code> if the array is null. 244 * <p> 245 * See {@link org.hipparchus.stat.descriptive.moment.Mean Mean} for 246 * details on the computing algorithm. 247 * 248 * @param values the input array 249 * @param begin index of the first array element to include 250 * @param length the number of elements to include 251 * @return the mean of the values or Double.NaN if length = 0 252 * @throws MathIllegalArgumentException if the array is null or the array index 253 * parameters are not valid 254 */ 255 public static double mean(final double[] values, final int begin, final int length) 256 throws MathIllegalArgumentException { 257 return MEAN.evaluate(values, begin, length); 258 } 259 260 /** 261 * Returns the geometric mean of the entries in the input array, or 262 * <code>Double.NaN</code> if the array is empty. 263 * <p> 264 * Throws <code>IllegalArgumentException</code> if the array is null. 265 * <p> 266 * See {@link org.hipparchus.stat.descriptive.moment.GeometricMean GeometricMean} 267 * for details on the computing algorithm. 268 * 269 * @param values the input array 270 * @return the geometric mean of the values or Double.NaN if the array is empty 271 * @throws MathIllegalArgumentException if the array is null 272 */ 273 public static double geometricMean(final double... values) throws MathIllegalArgumentException { 274 return GEOMETRIC_MEAN.evaluate(values); 275 } 276 277 /** 278 * Returns the geometric mean of the entries in the specified portion of 279 * the input array, or <code>Double.NaN</code> if the designated subarray 280 * is empty. 281 * <p> 282 * Throws <code>IllegalArgumentException</code> if the array is null. 283 * <p> 284 * See {@link org.hipparchus.stat.descriptive.moment.GeometricMean GeometricMean} 285 * for details on the computing algorithm. 286 * 287 * @param values the input array 288 * @param begin index of the first array element to include 289 * @param length the number of elements to include 290 * @return the geometric mean of the values or Double.NaN if length = 0 291 * @throws MathIllegalArgumentException if the array is null or the array index 292 * parameters are not valid 293 */ 294 public static double geometricMean(final double[] values, final int begin, final int length) 295 throws MathIllegalArgumentException { 296 return GEOMETRIC_MEAN.evaluate(values, begin, length); 297 } 298 299 /** 300 * Returns the variance of the entries in the input array, or 301 * <code>Double.NaN</code> if the array is empty. 302 * <p> 303 * This method returns the bias-corrected sample variance (using {@code n - 1} in 304 * the denominator). Use {@link #populationVariance(double[])} for the non-bias-corrected 305 * population variance. 306 * <p> 307 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 308 * details on the computing algorithm. 309 * <p> 310 * Returns 0 for a single-value (i.e. length = 1) sample. 311 * <p> 312 * Throws <code>MathIllegalArgumentException</code> if the array is null. 313 * 314 * @param values the input array 315 * @return the variance of the values or Double.NaN if the array is empty 316 * @throws MathIllegalArgumentException if the array is null 317 */ 318 public static double variance(final double... values) throws MathIllegalArgumentException { 319 return VARIANCE.evaluate(values); 320 } 321 322 /** 323 * Returns the variance of the entries in the specified portion of 324 * the input array, or <code>Double.NaN</code> if the designated subarray 325 * is empty. 326 * <p> 327 * This method returns the bias-corrected sample variance (using {@code n - 1} in 328 * the denominator). Use {@link #populationVariance(double[], int, int)} for the non-bias-corrected 329 * population variance. 330 * <p> 331 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 332 * details on the computing algorithm. 333 * <p> 334 * Returns 0 for a single-value (i.e. length = 1) sample. 335 * <p> 336 * Throws <code>MathIllegalArgumentException</code> if the array is null or the 337 * array index parameters are not valid. 338 * 339 * @param values the input array 340 * @param begin index of the first array element to include 341 * @param length the number of elements to include 342 * @return the variance of the values or Double.NaN if length = 0 343 * @throws MathIllegalArgumentException if the array is null or the array index 344 * parameters are not valid 345 */ 346 public static double variance(final double[] values, final int begin, final int length) 347 throws MathIllegalArgumentException { 348 return VARIANCE.evaluate(values, begin, length); 349 } 350 351 /** 352 * Returns the variance of the entries in the specified portion of 353 * the input array, using the precomputed mean value. Returns 354 * <code>Double.NaN</code> if the designated subarray is empty. 355 * <p> 356 * This method returns the bias-corrected sample variance (using {@code n - 1} in 357 * the denominator). Use {@link #populationVariance(double[], double, int, int)} for 358 * the non-bias-corrected population variance. 359 * <p> 360 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 361 * details on the computing algorithm. 362 * <p> 363 * The formula used assumes that the supplied mean value is the arithmetic 364 * mean of the sample data, not a known population parameter. This method 365 * is supplied only to save computation when the mean has already been 366 * computed. 367 * <p> 368 * Returns 0 for a single-value (i.e. length = 1) sample. 369 * <p> 370 * Throws <code>MathIllegalArgumentException</code> if the array is null or the 371 * array index parameters are not valid. 372 * 373 * @param values the input array 374 * @param mean the precomputed mean value 375 * @param begin index of the first array element to include 376 * @param length the number of elements to include 377 * @return the variance of the values or Double.NaN if length = 0 378 * @throws MathIllegalArgumentException if the array is null or the array index 379 * parameters are not valid 380 */ 381 public static double variance(final double[] values, final double mean, final int begin, final int length) 382 throws MathIllegalArgumentException { 383 return VARIANCE.evaluate(values, mean, begin, length); 384 } 385 386 /** 387 * Returns the variance of the entries in the input array, using the 388 * precomputed mean value. Returns <code>Double.NaN</code> if the array 389 * is empty. 390 * <p> 391 * This method returns the bias-corrected sample variance (using {@code n - 1} in 392 * the denominator). Use {@link #populationVariance(double[], double)} for the 393 * non-bias-corrected population variance. 394 * <p> 395 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 396 * details on the computing algorithm. 397 * <p> 398 * The formula used assumes that the supplied mean value is the arithmetic 399 * mean of the sample data, not a known population parameter. This method 400 * is supplied only to save computation when the mean has already been 401 * computed. 402 * <p> 403 * Returns 0 for a single-value (i.e. length = 1) sample. 404 * <p> 405 * Throws <code>MathIllegalArgumentException</code> if the array is null. 406 * 407 * @param values the input array 408 * @param mean the precomputed mean value 409 * @return the variance of the values or Double.NaN if the array is empty 410 * @throws MathIllegalArgumentException if the array is null 411 */ 412 public static double variance(final double[] values, final double mean) throws MathIllegalArgumentException { 413 return VARIANCE.evaluate(values, mean); 414 } 415 416 /** 417 * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance"> 418 * population variance</a> of the entries in the input array, or 419 * <code>Double.NaN</code> if the array is empty. 420 * <p> 421 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 422 * details on the formula and computing algorithm. 423 * <p> 424 * Returns 0 for a single-value (i.e. length = 1) sample. 425 * <p> 426 * Throws <code>MathIllegalArgumentException</code> if the array is null. 427 * 428 * @param values the input array 429 * @return the population variance of the values or Double.NaN if the array is empty 430 * @throws MathIllegalArgumentException if the array is null 431 */ 432 public static double populationVariance(final double... values) throws MathIllegalArgumentException { 433 return new Variance(false).evaluate(values); 434 } 435 436 /** 437 * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance"> 438 * population variance</a> of the entries in the specified portion of 439 * the input array, or <code>Double.NaN</code> if the designated subarray 440 * is empty. 441 * <p> 442 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 443 * details on the computing algorithm. 444 * <p> 445 * Returns 0 for a single-value (i.e. length = 1) sample. 446 * <p> 447 * Throws <code>MathIllegalArgumentException</code> if the array is null or the 448 * array index parameters are not valid. 449 * 450 * @param values the input array 451 * @param begin index of the first array element to include 452 * @param length the number of elements to include 453 * @return the population variance of the values or Double.NaN if length = 0 454 * @throws MathIllegalArgumentException if the array is null or the array index 455 * parameters are not valid 456 */ 457 public static double populationVariance(final double[] values, final int begin, final int length) 458 throws MathIllegalArgumentException { 459 return new Variance(false).evaluate(values, begin, length); 460 } 461 462 /** 463 * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance"> 464 * population variance</a> of the entries in the specified portion of 465 * the input array, using the precomputed mean value. Returns 466 * <code>Double.NaN</code> if the designated subarray is empty. 467 * <p> 468 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 469 * details on the computing algorithm. 470 * <p> 471 * The formula used assumes that the supplied mean value is the arithmetic 472 * mean of the sample data, not a known population parameter. This method 473 * is supplied only to save computation when the mean has already been 474 * computed. 475 * <p> 476 * Returns 0 for a single-value (i.e. length = 1) sample. 477 * <p> 478 * Throws <code>MathIllegalArgumentException</code> if the array is null or the 479 * array index parameters are not valid. 480 * 481 * @param values the input array 482 * @param mean the precomputed mean value 483 * @param begin index of the first array element to include 484 * @param length the number of elements to include 485 * @return the population variance of the values or Double.NaN if length = 0 486 * @throws MathIllegalArgumentException if the array is null or the array index 487 * parameters are not valid 488 */ 489 public static double populationVariance(final double[] values, final double mean, 490 final int begin, final int length) 491 throws MathIllegalArgumentException { 492 return new Variance(false).evaluate(values, mean, begin, length); 493 } 494 495 /** 496 * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance"> 497 * population variance</a> of the entries in the input array, using the precomputed 498 * mean value. Returns <code>Double.NaN</code> if the array is empty. 499 * <p> 500 * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for 501 * details on the computing algorithm. 502 * <p> 503 * The formula used assumes that the supplied mean value is the arithmetic 504 * mean of the sample data, not a known population parameter. This method is 505 * supplied only to save computation when the mean has already been computed. 506 * <p> 507 * Returns 0 for a single-value (i.e. length = 1) sample. 508 * <p> 509 * Throws <code>MathIllegalArgumentException</code> if the array is null. 510 * 511 * @param values the input array 512 * @param mean the precomputed mean value 513 * @return the population variance of the values or Double.NaN if the array is empty 514 * @throws MathIllegalArgumentException if the array is null 515 */ 516 public static double populationVariance(final double[] values, final double mean) 517 throws MathIllegalArgumentException { 518 return new Variance(false).evaluate(values, mean); 519 } 520 521 /** 522 * Returns the maximum of the entries in the input array, or 523 * <code>Double.NaN</code> if the array is empty. 524 * <p> 525 * Throws <code>MathIllegalArgumentException</code> if the array is null. 526 * </p> 527 * <ul> 528 * <li>The result is <code>NaN</code> iff all values are <code>NaN</code> 529 * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li> 530 * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>, 531 * the result is <code>Double.POSITIVE_INFINITY.</code></li> 532 * </ul> 533 * 534 * @param values the input array 535 * @return the maximum of the values or Double.NaN if the array is empty 536 * @throws MathIllegalArgumentException if the array is null 537 */ 538 public static double max(final double... values) throws MathIllegalArgumentException { 539 return MAX.evaluate(values); 540 } 541 542 /** 543 * Returns the maximum of the entries in the specified portion of the input array, 544 * or <code>Double.NaN</code> if the designated subarray is empty. 545 * <p> 546 * Throws <code>MathIllegalArgumentException</code> if the array is null or 547 * the array index parameters are not valid. 548 * </p> 549 * <ul> 550 * <li>The result is <code>NaN</code> iff all values are <code>NaN</code> 551 * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li> 552 * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>, 553 * the result is <code>Double.POSITIVE_INFINITY.</code></li> 554 * </ul> 555 * 556 * @param values the input array 557 * @param begin index of the first array element to include 558 * @param length the number of elements to include 559 * @return the maximum of the values or Double.NaN if length = 0 560 * @throws MathIllegalArgumentException if the array is null or the array index 561 * parameters are not valid 562 */ 563 public static double max(final double[] values, final int begin, final int length) 564 throws MathIllegalArgumentException { 565 return MAX.evaluate(values, begin, length); 566 } 567 568 /** 569 * Returns the minimum of the entries in the input array, or 570 * <code>Double.NaN</code> if the array is empty. 571 * <p> 572 * Throws <code>MathIllegalArgumentException</code> if the array is null. 573 * </p> 574 * <ul> 575 * <li>The result is <code>NaN</code> iff all values are <code>NaN</code> 576 * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li> 577 * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>, 578 * the result is <code>Double.NEGATIVE_INFINITY.</code></li> 579 * </ul> 580 * 581 * @param values the input array 582 * @return the minimum of the values or Double.NaN if the array is empty 583 * @throws MathIllegalArgumentException if the array is null 584 */ 585 public static double min(final double... values) throws MathIllegalArgumentException { 586 return MIN.evaluate(values); 587 } 588 589 /** 590 * Returns the minimum of the entries in the specified portion of the input array, 591 * or <code>Double.NaN</code> if the designated subarray is empty. 592 * <p> 593 * Throws <code>MathIllegalArgumentException</code> if the array is null or 594 * the array index parameters are not valid. 595 * </p> 596 * <ul> 597 * <li>The result is <code>NaN</code> iff all values are <code>NaN</code> 598 * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li> 599 * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>, 600 * the result is <code>Double.NEGATIVE_INFINITY.</code></li> 601 * </ul> 602 * 603 * @param values the input array 604 * @param begin index of the first array element to include 605 * @param length the number of elements to include 606 * @return the minimum of the values or Double.NaN if length = 0 607 * @throws MathIllegalArgumentException if the array is null or the array index 608 * parameters are not valid 609 */ 610 public static double min(final double[] values, final int begin, final int length) 611 throws MathIllegalArgumentException { 612 return MIN.evaluate(values, begin, length); 613 } 614 615 /** 616 * Returns an estimate of the <code>p</code>th percentile of the values 617 * in the <code>values</code> array. 618 * <ul> 619 * <li>Returns <code>Double.NaN</code> if <code>values</code> has length 620 * <code>0</code></li> 621 * <li>Returns (for any value of <code>p</code>) <code>values[0]</code> 622 * if <code>values</code> has length <code>1</code></li> 623 * <li>Throws <code>IllegalArgumentException</code> if <code>values</code> 624 * is null or p is not a valid quantile value (p must be greater than 0 625 * and less than or equal to 100)</li> 626 * </ul> 627 * <p> 628 * See {@link org.hipparchus.stat.descriptive.rank.Percentile Percentile} 629 * for a description of the percentile estimation algorithm used. 630 * 631 * @param values input array of values 632 * @param p the percentile value to compute 633 * @return the percentile value or Double.NaN if the array is empty 634 * @throws MathIllegalArgumentException if <code>values</code> is null or p is invalid 635 */ 636 public static double percentile(final double[] values, final double p) throws MathIllegalArgumentException { 637 return PERCENTILE.evaluate(values,p); 638 } 639 640 /** 641 * Returns an estimate of the <code>p</code>th percentile of the values 642 * in the <code>values</code> array, starting with the element in (0-based) 643 * position <code>begin</code> in the array and including <code>length</code> 644 * values. 645 * <ul> 646 * <li>Returns <code>Double.NaN</code> if <code>length = 0</code></li> 647 * <li>Returns (for any value of <code>p</code>) <code>values[begin]</code> 648 * if <code>length = 1 </code></li> 649 * <li>Throws <code>MathIllegalArgumentException</code> if <code>values</code> 650 * is null, <code>begin</code> or <code>length</code> is invalid, or 651 * <code>p</code> is not a valid quantile value (p must be greater than 0 652 * and less than or equal to 100)</li> 653 * </ul> 654 * <p> 655 * See {@link org.hipparchus.stat.descriptive.rank.Percentile Percentile} 656 * for a description of the percentile estimation algorithm used. 657 * 658 * @param values array of input values 659 * @param p the percentile to compute 660 * @param begin the first (0-based) element to include in the computation 661 * @param length the number of array elements to include 662 * @return the percentile value 663 * @throws MathIllegalArgumentException if the parameters are not valid or the input array is null 664 */ 665 public static double percentile(final double[] values, final int begin, final int length, final double p) 666 throws MathIllegalArgumentException { 667 return PERCENTILE.evaluate(values, begin, length, p); 668 } 669 670 /** 671 * Returns the sum of the (signed) differences between corresponding elements of the 672 * input arrays -- i.e., sum(sample1[i] - sample2[i]). 673 * 674 * @param sample1 the first array 675 * @param sample2 the second array 676 * @return sum of paired differences 677 * @throws MathIllegalArgumentException if the arrays do not have the same (positive) length. 678 * @throws MathIllegalArgumentException if the sample arrays are empty. 679 */ 680 public static double sumDifference(final double[] sample1, final double[] sample2) 681 throws MathIllegalArgumentException { 682 683 int n = sample1.length; 684 MathArrays.checkEqualLength(sample1, sample2); 685 if (n <= 0) { 686 throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_DIMENSION); 687 } 688 double result = 0; 689 for (int i = 0; i < n; i++) { 690 result += sample1[i] - sample2[i]; 691 } 692 return result; 693 } 694 695 /** 696 * Returns the mean of the (signed) differences between corresponding elements of the 697 * input arrays -- i.e., sum(sample1[i] - sample2[i]) / sample1.length. 698 * 699 * @param sample1 the first array 700 * @param sample2 the second array 701 * @return mean of paired differences 702 * @throws MathIllegalArgumentException if the arrays do not have the same (positive) length. 703 * @throws MathIllegalArgumentException if the sample arrays are empty. 704 */ 705 public static double meanDifference(final double[] sample1, final double[] sample2) 706 throws MathIllegalArgumentException { 707 return sumDifference(sample1, sample2) / sample1.length; 708 } 709 710 /** 711 * Returns the variance of the (signed) differences between corresponding elements of the 712 * input arrays -- i.e., var(sample1[i] - sample2[i]). 713 * 714 * @param sample1 the first array 715 * @param sample2 the second array 716 * @param meanDifference the mean difference between corresponding entries 717 * @return variance of paired differences 718 * @throws MathIllegalArgumentException if the arrays do not have the same length. 719 * @throws MathIllegalArgumentException if the arrays length is less than 2. 720 * @see #meanDifference(double[],double[]) 721 */ 722 public static double varianceDifference(final double[] sample1, final double[] sample2, double meanDifference) 723 throws MathIllegalArgumentException { 724 725 double sum1 = 0d; 726 double sum2 = 0d; 727 int n = sample1.length; 728 MathArrays.checkEqualLength(sample1, sample2); 729 if (n < 2) { 730 throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL, 731 n, 2); 732 } 733 for (int i = 0; i < n; i++) { 734 final double diff = sample1[i] - sample2[i]; 735 sum1 += (diff - meanDifference) *(diff - meanDifference); 736 sum2 += diff - meanDifference; 737 } 738 return (sum1 - (sum2 * sum2 / n)) / (n - 1); 739 } 740 741 /** 742 * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. 743 * 744 * @param sample Sample to normalize. 745 * @return normalized (standardized) sample. 746 */ 747 public static double[] normalize(final double... sample) { 748 DescriptiveStatistics stats = new DescriptiveStatistics(); 749 750 // Add the data from the series to stats 751 for (int i = 0; i < sample.length; i++) { 752 stats.addValue(sample[i]); 753 } 754 755 // Compute mean and standard deviation 756 double mean = stats.getMean(); 757 double standardDeviation = stats.getStandardDeviation(); 758 759 // initialize the standardizedSample, which has the same length as the sample 760 double[] standardizedSample = new double[sample.length]; 761 762 for (int i = 0; i < sample.length; i++) { 763 // z = (x- mean)/standardDeviation 764 standardizedSample[i] = (sample[i] - mean) / standardDeviation; 765 } 766 return standardizedSample; 767 } 768 769 /** 770 * Returns the sample mode(s). 771 * <p> 772 * The mode is the most frequently occurring value in the sample. 773 * If there is a unique value with maximum frequency, this value is returned 774 * as the only element of the output array. Otherwise, the returned array 775 * contains the maximum frequency elements in increasing order. 776 * <p> 777 * For example, if {@code sample} is {0, 12, 5, 6, 0, 13, 5, 17}, 778 * the returned array will have length two, with 0 in the first element and 779 * 5 in the second. 780 * <p> 781 * NaN values are ignored when computing the mode - i.e., NaNs will never 782 * appear in the output array. If the sample includes only NaNs or has 783 * length 0, an empty array is returned. 784 * 785 * @param sample input data 786 * @return array of array of the most frequently occurring element(s) sorted in ascending order. 787 * @throws MathIllegalArgumentException if the indices are invalid or the array is null 788 */ 789 public static double[] mode(double... sample) throws MathIllegalArgumentException { 790 MathUtils.checkNotNull(sample, LocalizedCoreFormats.INPUT_ARRAY); 791 return getMode(sample, 0, sample.length); 792 } 793 794 /** 795 * Returns the sample mode(s). 796 * <p> 797 * The mode is the most frequently occurring value in the sample. 798 * If there is a unique value with maximum frequency, this value is returned 799 * as the only element of the output array. Otherwise, the returned array 800 * contains the maximum frequency elements in increasing order. 801 * <p> 802 * For example, if {@code sample} is {0, 12, 5, 6, 0, 13, 5, 17}, 803 * the returned array will have length two, with 0 in the first element and 804 * 5 in the second. 805 * <p> 806 * NaN values are ignored when computing the mode - i.e., NaNs will never 807 * appear in the output array. If the sample includes only NaNs or has 808 * length 0, an empty array is returned. 809 * 810 * @param sample input data 811 * @param begin index (0-based) of the first array element to include 812 * @param length the number of elements to include 813 * @return array of array of the most frequently occurring element(s) sorted in ascending order. 814 * @throws MathIllegalArgumentException if the indices are invalid or the array is null 815 */ 816 public static double[] mode(double[] sample, final int begin, final int length) { 817 MathUtils.checkNotNull(sample, LocalizedCoreFormats.INPUT_ARRAY); 818 819 if (begin < 0) { 820 throw new MathIllegalArgumentException(LocalizedCoreFormats.START_POSITION, Integer.valueOf(begin)); 821 } 822 823 if (length < 0) { 824 throw new MathIllegalArgumentException(LocalizedCoreFormats.LENGTH, Integer.valueOf(length)); 825 } 826 827 return getMode(sample, begin, length); 828 } 829 830 /** 831 * Private helper method. 832 * Assumes parameters have been validated. 833 * @param values input data 834 * @param begin index (0-based) of the first array element to include 835 * @param length the number of elements to include 836 * @return array of array of the most frequently occurring element(s) sorted in ascending order. 837 */ 838 private static double[] getMode(double[] values, final int begin, final int length) { 839 // Add the values to the frequency table 840 Frequency<Double> freq = new Frequency<>(); 841 842 Arrays.stream(values, begin, begin + length) 843 .filter(d -> !Double.isNaN(d)) 844 .forEach(freq::addValue); 845 846 List<Double> list = freq.getMode(); 847 // Convert the list to an array of primitive double 848 return list.stream() 849 .mapToDouble(Double::doubleValue) 850 .toArray(); 851 } 852 853 }