View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.special.elliptic.jacobi;
18  
19  import org.hipparchus.util.FastMath;
20  
21  /** Algorithm for computing the principal Jacobi functions for negative parameter m.
22   * <p>
23   * The rules for negative parameter change are given in Abramowitz and Stegun, section 16.10.
24   * </p>
25   * @since 2.0
26   */
27  class NegativeParameter extends JacobiElliptic {
28  
29      /** Algorithm to use for the positive parameter. */
30      private final JacobiElliptic algorithm;
31  
32      /** Input scaling factor. */
33      private final double inputScale;
34  
35      /** output scaling factor. */
36      private final double outputScale;
37  
38      /** Simple constructor.
39       * @param m parameter of the Jacobi elliptic function (must be negative here)
40       */
41      NegativeParameter(final double m) {
42          super(m);
43          final double omM = 1.0 - m;
44          algorithm        = JacobiEllipticBuilder.build(-m / omM);
45          inputScale       = FastMath.sqrt(omM);
46          outputScale      = 1.0 / inputScale;
47      }
48  
49      /** {@inheritDoc} */
50      @Override
51      public CopolarN valuesN(final double u) {
52          final CopolarD trioD = new CopolarD(algorithm.valuesN(u * inputScale));
53          return new CopolarN(outputScale * trioD.sd(), trioD.cd(), trioD.nd());
54      }
55  
56  }