View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.special.elliptic.jacobi;
18  
19  import org.hipparchus.util.FastMath;
20  import org.hipparchus.util.SinhCosh;
21  
22  /** Algorithm for computing the principal Jacobi functions for parameters slightly below one.
23   * <p>
24   * The algorithm for evaluating the functions is based on approximation
25   * in terms of hyperbolic functions. It is given in Abramowitz and Stegun,
26   * sections 16.15.
27   * </p>
28   * @since 2.0
29   */
30  class NearOneParameter extends JacobiElliptic {
31  
32      /** Complementary parameter of the Jacobi elliptic function. */
33      private final double m1;
34  
35      /** Simple constructor.
36       * @param m parameter of the Jacobi elliptic function (must be one or slightly below one here)
37       */
38      NearOneParameter(final double m) {
39          super(m);
40          this.m1 = 1.0 - m;
41      }
42  
43      /** {@inheritDoc} */
44      @Override
45      public CopolarN valuesN(final double u) {
46          final SinhCosh sch  = FastMath.sinhCosh(u);
47          final double sech   =  1.0 / sch.cosh();
48          final double t      = sch.sinh() * sech;
49          final double factor = 0.25 * m1 * (sch.sinh() * sch.cosh()  - u) * sech;
50          return new CopolarN(t + factor * sech,  // equation 16.15.1
51                              sech - factor * t,  // equation 16.15.2
52                              sech + factor * t); // equation 16.15.3
53      }
54  
55  }