1 /* 2 * Licensed to the Hipparchus project under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.hipparchus.special.elliptic.jacobi; 18 19 import org.hipparchus.CalculusFieldElement; 20 import org.hipparchus.util.FastMath; 21 22 /** Algorithm for computing the principal Jacobi functions for negative parameter m. 23 * <p> 24 * The rules for negative parameter change are given in Abramowitz and Stegun, section 16.10. 25 * </p> 26 * @param <T> the type of the field elements 27 * @since 2.0 28 */ 29 class FieldNegativeParameter<T extends CalculusFieldElement<T>> extends FieldJacobiElliptic<T> { 30 31 /** Algorithm to use for the positive parameter. */ 32 private final FieldJacobiElliptic<T> algorithm; 33 34 /** Input scaling factor. */ 35 private final T inputScale; 36 37 /** output scaling factor. */ 38 private final T outputScale; 39 40 /** Simple constructor. 41 * @param m parameter of the Jacobi elliptic function (must be negative here) 42 */ 43 FieldNegativeParameter(final T m) { 44 super(m); 45 final T omM = m.getField().getOne().subtract(m); 46 algorithm = JacobiEllipticBuilder.build(m.negate().divide(omM)); 47 inputScale = FastMath.sqrt(omM); 48 outputScale = inputScale.reciprocal(); 49 } 50 51 /** {@inheritDoc} */ 52 @Override 53 public FieldCopolarN<T> valuesN(final T u) { 54 final FieldCopolarD<T> trioD = new FieldCopolarD<>(algorithm.valuesN(u.multiply(inputScale))); 55 return new FieldCopolarN<>(outputScale.multiply(trioD.sd()), trioD.cd(), trioD.nd()); 56 } 57 58 }