1 /* 2 * Licensed to the Hipparchus project under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.hipparchus.special.elliptic.jacobi; 18 19 import org.hipparchus.CalculusFieldElement; 20 import org.hipparchus.util.FastMath; 21 import org.hipparchus.util.FieldSinhCosh; 22 23 /** Algorithm for computing the principal Jacobi functions for parameters slightly below one. 24 * <p> 25 * The algorithm for evaluating the functions is based on approximation 26 * in terms of hyperbolic functions. It is given in Abramowitz and Stegun, 27 * sections 16.15. 28 * </p> 29 * @param <T> the type of the field elements 30 * @since 2.0 31 */ 32 class FieldNearOneParameter<T extends CalculusFieldElement<T>> extends FieldJacobiElliptic<T> { 33 34 /** Complementary parameter of the Jacobi elliptic function. */ 35 private final T m1Fourth; 36 37 /** Simple constructor. 38 * @param m parameter of the Jacobi elliptic function (must be one or slightly below one here) 39 */ 40 FieldNearOneParameter(final T m) { 41 super(m); 42 this.m1Fourth = m.getField().getOne().subtract(m).multiply(0.25); 43 } 44 45 /** {@inheritDoc} */ 46 @Override 47 public FieldCopolarN<T> valuesN(final T u) { 48 final FieldSinhCosh<T> sch = FastMath.sinhCosh(u); 49 final T sech = sch.cosh().reciprocal(); 50 final T t = sch.sinh().multiply(sech); 51 final T factor = sch.sinh().multiply(sch.cosh()).subtract(u).multiply(sech).multiply(m1Fourth); 52 return new FieldCopolarN<>(t.add(factor.multiply(sech)), // equation 16.15.1 53 sech.subtract(factor.multiply(t)), // equation 16.15.2 54 sech.add(factor.multiply(t))); // equation 16.15.3 55 } 56 57 }