View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.special.elliptic.jacobi;
18  
19  import org.hipparchus.complex.Complex;
20  import org.hipparchus.special.elliptic.legendre.LegendreEllipticIntegral;
21  import org.hipparchus.util.FastMath;
22  import org.hipparchus.util.MathUtils;
23  
24  /** Algorithm for computing the principal Jacobi functions for complex parameter m.
25   * @since 2.0
26   */
27  class ComplexParameter extends FieldJacobiElliptic<Complex> {
28  
29      /** Jacobi θ functions. */
30      private final FieldJacobiTheta<Complex> jacobiTheta;
31  
32      /** Quarter period K. */
33      private final Complex bigK;
34  
35      /** Quarter period iK'. */
36      private final Complex iBigKPrime;
37  
38      /** Real periodic factor for K. */
39      private final double rK;
40  
41      /** Imaginary periodic factor for K. */
42      private final double iK;
43  
44      /** Real periodic factor for iK'. */
45      private final double rKPrime;
46  
47      /** Imaginary periodic factor for iK'. */
48      private final double iKPrime;
49  
50      /** Value of Jacobi θ functions at origin. */
51      private final FieldTheta<Complex> t0;
52  
53      /** Scaling factor. */
54      private final Complex scaling;
55  
56      /** Simple constructor.
57       * @param m parameter of the Jacobi elliptic function
58       */
59      ComplexParameter(final Complex m) {
60  
61          super(m);
62  
63          // compute nome
64          final Complex q = LegendreEllipticIntegral.nome(m);
65  
66          // compute periodic factors such that
67          // z = 4 K [rK Re(z) + iK Im(z)] + 4i K' [rK' Re(z) + iK' Im(z)]
68          bigK                 = LegendreEllipticIntegral.bigK(m);
69          iBigKPrime           = LegendreEllipticIntegral.bigKPrime(m).multiplyPlusI();
70          final double inverse = 0.25 /
71                                 (bigK.getRealPart()      * iBigKPrime.getImaginaryPart() -
72                                  bigK.getImaginaryPart() * iBigKPrime.getRealPart());
73          this.rK              = iBigKPrime.getImaginaryPart() *  inverse;
74          this.iK              = iBigKPrime.getRealPart()      * -inverse;
75          this.rKPrime         = bigK.getImaginaryPart()       * -inverse;
76          this.iKPrime         = bigK.getRealPart()            *  inverse;
77  
78          // prepare underlying Jacobi θ functions
79          this.jacobiTheta = new FieldJacobiTheta<>(q);
80          this.t0          = jacobiTheta.values(m.getField().getZero());
81          this.scaling     = bigK.reciprocal().multiply(MathUtils.SEMI_PI);
82  
83      }
84  
85      /** {@inheritDoc}
86       * <p>
87       * The algorithm for evaluating the functions is based on {@link FieldJacobiTheta
88       * Jacobi theta functions}.
89       * </p>
90       */
91      @Override
92      public FieldCopolarN<Complex> valuesN(Complex u) {
93  
94          // perform argument reduction
95          final double cK      = rK * u.getRealPart() + iK * u.getImaginaryPart();
96          final double cKPrime = rKPrime * u.getRealPart() + iKPrime * u.getImaginaryPart();
97          final Complex reducedU = u.linearCombination(1.0,                        u,
98                                                      -4 * FastMath.rint(cK),      bigK,
99                                                      -4 * FastMath.rint(cKPrime), iBigKPrime);
100 
101         // evaluate Jacobi θ functions at argument
102         final FieldTheta<Complex> tZ = jacobiTheta.values(reducedU.multiply(scaling));
103 
104         // convert to Jacobi elliptic functions
105         final Complex sn = t0.theta3().multiply(tZ.theta1()).divide(t0.theta2().multiply(tZ.theta4()));
106         final Complex cn = t0.theta4().multiply(tZ.theta2()).divide(t0.theta2().multiply(tZ.theta4()));
107         final Complex dn = t0.theta4().multiply(tZ.theta3()).divide(t0.theta3().multiply(tZ.theta4()));
108 
109         return new FieldCopolarN<>(sn, cn, dn);
110 
111     }
112 
113 }