View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.special.elliptic.carlson;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.Field;
21  import org.hipparchus.complex.Complex;
22  import org.hipparchus.complex.FieldComplex;
23  import org.hipparchus.util.FastMath;
24  import org.hipparchus.util.MathArrays;
25  
26  /** Duplication algorithm for Carlson symmetric forms.
27   * <p>
28   * The algorithms are described in B. C. Carlson 1995 paper
29   * "Numerical computation of real or complex elliptic integrals", with
30   * improvements described in the appendix of B. C. Carlson and James FitzSimons
31   * 2000 paper "Reduction theorems for elliptic integrands with the square root
32   * of two quadratic factors". They are also described in
33   * <a href="https://dlmf.nist.gov/19.36#i">section 19.36(i)</a>
34   * of Digital Library of Mathematical Functions.
35   * </p>
36   * @param <T> type of the field elements (really {@link Complex} or {@link FieldComplex})
37   * @since 2.0
38   */
39  abstract class FieldDuplication<T extends CalculusFieldElement<T>> {
40  
41      /** Max number of iterations. */
42      private static final int M_MAX = 16;
43  
44      /** Symmetric variables of the integral, plus mean point. */
45      private final T[] initialVA;
46  
47      /** Convergence criterion. */
48      private final double q;
49  
50      /** Constructor.
51       * @param v symmetric variables of the integral
52       */
53      @SafeVarargs
54      FieldDuplication(final T... v) {
55  
56          final Field<T> field = v[0].getField();
57          final int n = v.length;
58          initialVA = MathArrays.buildArray(field, n + 1);
59          System.arraycopy(v, 0, initialVA, 0, n);
60          initialMeanPoint(initialVA);
61  
62          T max = field.getZero();
63          final T a0 = initialVA[n];
64          for (final T vi : v) {
65              max = FastMath.max(max, a0.subtract(vi).abs());
66          }
67          this.q = convergenceCriterion(FastMath.ulp(field.getOne()), max).getReal();
68  
69      }
70  
71      /** Get the i<sup>th</sup> symmetric variable.
72       * @param i index of the variable
73       * @return i<sup>th</sup> symmetric variable
74       */
75      protected T getVi(final int i) {
76          return initialVA[i];
77      }
78  
79      /** Compute initial mean point.
80       * <p>
81       * The initial mean point is put as the last array element
82       * </>
83       * @param va symmetric variables of the integral (plus placeholder for initial mean point)
84       */
85      protected abstract void initialMeanPoint(T[] va);
86  
87      /** Compute convergence criterion.
88       * @param r relative tolerance
89       * @param max max(|a0-v[i]|)
90       * @return convergence criterion
91       */
92      protected abstract T convergenceCriterion(T r, T max);
93  
94      /** Update reduced variables in place.
95       * <ul>
96       *  <li>vₘ₊₁|i] ← (vₘ[i] + λₘ) / 4</li>
97       *  <li>aₘ₊₁ ← (aₘ + λₘ) / 4</li>
98       * </ul>
99       * @param m iteration index
100      * @param vaM reduced variables and mean point (updated in place)
101      * @param sqrtM square roots of reduced variables
102      * @param fourM 4<sup>m</sup>
103      */
104     protected abstract void update(int m, T[] vaM, T[] sqrtM, double fourM);
105 
106     /** Evaluate integral.
107      * @param va0 initial symmetric variables and mean point of the integral
108      * @param aM reduced mean point
109      * @param fourM 4<sup>m</sup>
110      * @return convergence criterion
111      */
112     protected abstract T evaluate(T[] va0, T aM, double fourM);
113 
114     /** Compute Carlson elliptic integral.
115      * @return Carlson elliptic integral
116      */
117     public T integral() {
118 
119         // duplication iterations
120         final int n     = initialVA.length - 1;
121         final T[] vaM   = initialVA.clone();
122         final T[] sqrtM = MathArrays.buildArray(initialVA[0].getField(), n);
123         double    fourM = 1.0;
124         for (int m = 0; m < M_MAX; ++m) {
125 
126             if (m > 0 && q < fourM * vaM[n].norm()) {
127                 // convergence reached
128                 break;
129             }
130 
131             // apply duplication once more
132             // (we know that {Field}Complex.sqrt() returns the root with nonnegative real part)
133             for (int i = 0; i < n; ++i) {
134                 sqrtM[i] = vaM[i].sqrt();
135             }
136             update(m, vaM, sqrtM, fourM);
137 
138             fourM *= 4;
139 
140         }
141 
142         return evaluate(initialVA, vaM[n], fourM);
143 
144     }
145 
146 }