1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22
23 package org.hipparchus.optim.univariate;
24
25 import java.util.Arrays;
26 import java.util.Comparator;
27
28 import org.hipparchus.exception.LocalizedCoreFormats;
29 import org.hipparchus.exception.MathIllegalStateException;
30 import org.hipparchus.exception.MathIllegalArgumentException;
31 import org.hipparchus.optim.MaxEval;
32 import org.hipparchus.optim.OptimizationData;
33 import org.hipparchus.optim.nonlinear.scalar.GoalType;
34 import org.hipparchus.random.RandomGenerator;
35
36 /**
37 * Special implementation of the {@link UnivariateOptimizer} interface
38 * adding multi-start features to an existing optimizer.
39 * <br>
40 * This class wraps an optimizer in order to use it several times in
41 * turn with different starting points (trying to avoid being trapped
42 * in a local extremum when looking for a global one).
43 *
44 */
45 public class MultiStartUnivariateOptimizer
46 extends UnivariateOptimizer {
47 /** Underlying classical optimizer. */
48 private final UnivariateOptimizer optimizer;
49 /** Number of evaluations already performed for all starts. */
50 private int totalEvaluations;
51 /** Number of starts to go. */
52 private final int starts;
53 /** Random generator for multi-start. */
54 private final RandomGenerator generator;
55 /** Found optima. */
56 private UnivariatePointValuePair[] optima;
57 /** Optimization data. */
58 private OptimizationData[] optimData;
59 /**
60 * Location in {@link #optimData} where the updated maximum
61 * number of evaluations will be stored.
62 */
63 private int maxEvalIndex = -1;
64 /**
65 * Location in {@link #optimData} where the updated start value
66 * will be stored.
67 */
68 private int searchIntervalIndex = -1;
69
70 /**
71 * Create a multi-start optimizer from a single-start optimizer.
72 *
73 * @param optimizer Single-start optimizer to wrap.
74 * @param starts Number of starts to perform. If {@code starts == 1},
75 * the {@code optimize} methods will return the same solution as
76 * {@code optimizer} would.
77 * @param generator Random generator to use for restarts.
78 * @throws MathIllegalArgumentException if {@code starts < 1}.
79 */
80 public MultiStartUnivariateOptimizer(final UnivariateOptimizer optimizer,
81 final int starts,
82 final RandomGenerator generator) {
83 super(optimizer.getConvergenceChecker());
84
85 if (starts < 1) {
86 throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
87 starts, 1);
88 }
89
90 this.optimizer = optimizer;
91 this.starts = starts;
92 this.generator = generator;
93 }
94
95 /** {@inheritDoc} */
96 @Override
97 public int getEvaluations() {
98 return totalEvaluations;
99 }
100
101 /**
102 * Gets all the optima found during the last call to {@code optimize}.
103 * The optimizer stores all the optima found during a set of
104 * restarts. The {@code optimize} method returns the best point only.
105 * This method returns all the points found at the end of each starts,
106 * including the best one already returned by the {@code optimize} method.
107 * <br>
108 * The returned array as one element for each start as specified
109 * in the constructor. It is ordered with the results from the
110 * runs that did converge first, sorted from best to worst
111 * objective value (i.e in ascending order if minimizing and in
112 * descending order if maximizing), followed by {@code null} elements
113 * corresponding to the runs that did not converge. This means all
114 * elements will be {@code null} if the {@code optimize} method did throw
115 * an exception.
116 * This also means that if the first element is not {@code null}, it is
117 * the best point found across all starts.
118 *
119 * @return an array containing the optima.
120 * @throws MathIllegalStateException if {@link #optimize(OptimizationData[])
121 * optimize} has not been called.
122 */
123 public UnivariatePointValuePair[] getOptima() {
124 if (optima == null) {
125 throw new MathIllegalStateException(LocalizedCoreFormats.NO_OPTIMUM_COMPUTED_YET);
126 }
127 return optima.clone();
128 }
129
130 /**
131 * {@inheritDoc}
132 *
133 * @throws MathIllegalStateException if {@code optData} does not contain an
134 * instance of {@link MaxEval} or {@link SearchInterval}.
135 */
136 @Override
137 public UnivariatePointValuePair optimize(OptimizationData... optData) {
138 // Store arguments in order to pass them to the internal optimizer.
139 optimData = optData.clone();
140 // Set up base class and perform computations.
141 return super.optimize(optData);
142 }
143
144 /** {@inheritDoc} */
145 @Override
146 protected UnivariatePointValuePair doOptimize() {
147 // Remove all instances of "MaxEval" and "SearchInterval" from the
148 // array that will be passed to the internal optimizer.
149 // The former is to enforce smaller numbers of allowed evaluations
150 // (according to how many have been used up already), and the latter
151 // to impose a different start value for each start.
152 for (int i = 0; i < optimData.length; i++) {
153 if (optimData[i] instanceof MaxEval) {
154 optimData[i] = null;
155 maxEvalIndex = i;
156 continue;
157 }
158 if (optimData[i] instanceof SearchInterval) {
159 optimData[i] = null;
160 searchIntervalIndex = i;
161 continue;
162 }
163 }
164 if (maxEvalIndex == -1) {
165 throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
166 }
167 if (searchIntervalIndex == -1) {
168 throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
169 }
170
171 RuntimeException lastException = null;
172 optima = new UnivariatePointValuePair[starts];
173 totalEvaluations = 0;
174
175 final int maxEval = getMaxEvaluations();
176 final double min = getMin();
177 final double max = getMax();
178 final double startValue = getStartValue();
179
180 // Multi-start loop.
181 for (int i = 0; i < starts; i++) {
182 // CHECKSTYLE: stop IllegalCatch
183 try {
184 // Decrease number of allowed evaluations.
185 optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
186 // New start value.
187 final double s = (i == 0) ?
188 startValue :
189 min + generator.nextDouble() * (max - min);
190 optimData[searchIntervalIndex] = new SearchInterval(min, max, s);
191 // Optimize.
192 optima[i] = optimizer.optimize(optimData);
193 } catch (RuntimeException mue) { // NOPMD - caching a RuntimeException is intentional here, it will be rethrown later
194 lastException = mue;
195 optima[i] = null;
196 }
197 // CHECKSTYLE: resume IllegalCatch
198
199 totalEvaluations += optimizer.getEvaluations();
200 }
201
202 sortPairs(getGoalType());
203
204 if (optima[0] == null) {
205 throw lastException; // Cannot be null if starts >= 1.
206 }
207
208 // Return the point with the best objective function value.
209 return optima[0];
210 }
211
212 /**
213 * Sort the optima from best to worst, followed by {@code null} elements.
214 *
215 * @param goal Goal type.
216 */
217 private void sortPairs(final GoalType goal) {
218 Arrays.sort(optima, new Comparator<UnivariatePointValuePair>() {
219 /** {@inheritDoc} */
220 @Override
221 public int compare(final UnivariatePointValuePair o1,
222 final UnivariatePointValuePair o2) {
223 if (o1 == null) {
224 return (o2 == null) ? 0 : 1;
225 } else if (o2 == null) {
226 return -1;
227 }
228 final double v1 = o1.getValue();
229 final double v2 = o2.getValue();
230 return (goal == GoalType.MINIMIZE) ?
231 Double.compare(v1, v2) : Double.compare(v2, v1);
232 }
233 });
234 }
235 }